
Securing robot endpoints in
Operation Technology (OT)
enviroments
Extending KICS with the Robot Immune System (RIS)

A cooperation between Alias Robotics and Kaspersky

ABSTRACT
Are robot endpoints secure in industrial environments? Current industrial security
solutions monitor network interaction and detect unexpected traffic and
cyber-threats. Robot-specific protocols and tools are commonly unknown to these
solutions and moreover, detection is far from what robots require since most are
fully exposed to simple attacks according to recent research. Given the physical
interaction these robots have with humans and our environments, attackers
targeting robots should be blocked before interacting with their controllers,
preventing safety hazards. Cybersecurity thereby becomes a strong
pre-requirement to safety in robotics.

Through a cooperation between Alias Robotics and Kaspersky, we launched a
research effort to shed some light on the status of security for robot endpoints in
OT environments. Our research showed evidence that simple attacks were feasible
and that specialized security controls are necessary for capturing the complexity
of modern robot interactions and preventing safety hazards.
We deployed KICS and RIS, the Robot Immune System on selected robots. RIS is
a security certified software solution that protects robots and robot components
against malware, a Robot Endpoint Protection Platform (REPP). We confirmed
how both solutions together successfully managed to protect and detect attacks
targeting the robots.

Publisher

Alias Robotics

INDEX 1

2

3

4

5

Use case

 Components
 Virtualization

Attacking an OT environment with robots

 ATTACK VECTOR 1: Process network insider
 ATTACK VECTOR 2: Controller insider
 ATTACK VECTOR 3: Compromising the ROS network

Conclusions and future work

References

Motivation
 Introduction

 Safety standards in robotics require security

 Objectives and goals

Start reading

6 Appendices
A Alurity YAML file to reproduce use case

B Karspersky Lab Appliclations

4 5

Securing robot endpoints in Operational Technology (OT) enviroments
Extending KICS with the Robot Immune System (RIS)

Securing robot endpoints in Operational Technology (OT) enviroments
Extending KICS with the Robot Immune System (RIS)

Key terms and definitions-

Architecture dataflow: A diagram that displays and interrelates the different components, actors and assets
that play a relevant role on a given system

Attack library: A set of attack tools, either proof-of-concept code or fully developed (“weaponized”) exploit
code that can help you understand the attacks.

Attack surface: A trust boundary and a direction from which an attacker (often captures with another trust
boundary) could launch an attack

Attack tree: A method to find threats, a way to organize threats found with other building blocks, or both.

Attack vector: An attack vector is a path that an attacker could follow to perform an attack on the system
typically involving an entry point.

Entry point: Specific areas in your architecture from where an actor could initiate attacks.

Trust boundary: Anyplace where various principals come together—that is, where entities with different
privileges interact.

Threat: A risk that might exploit a vulnerability to breach security and therefore cause possible harm.

Endpoint Protection Platform (EPP): an integrated suite of endpoint protection technologies that detects
and stops a variety of threats at the endpoint.

Information Technology (IT): the technology and use of computers to store, retrieve, transmit, and manipulate
data or information throughout and between organizations.

Kaspersky Industrial CyberSecurity (KICS): a holistic solution for industrial infrastructures.

Operational Technology (OT): the technology that manages industrial operations by monitoring and controlling
specific devices and processes within industrial workflows and operations, as opposed to administrative (IT).

Robot Immune System (RIS): a security certified software solution that protects robots and robot components
against malware. An EPP for robots.

Robotics: A robot is a system of systems. One that comprises sensors to perceive its environment, actuators
to act on it and computation to process it all and respond coherently to its application (could be industrial,
professional, etc.). Robotics is the art of system integration. An art that aims to build machines that operate
autonomously.

Zero trust (ZT): A security model that makes no trust assumptions and demands strict identity verification
for every person, device or component trying to access resources on a network,regardless of whether they
are sitting inside or outside of the network perimeter

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

6 7

Securing robot endpoints in Operational Technology (OT) enviroments
Extending KICS with the Robot Immune System (RIS)

Securing robot endpoints in Operational Technology (OT) enviroments
Extending KICS with the Robot Immune System (RIS)

Motivation1

Robot cybersecurity reviews [9], [10] criticize the current status of cybersecurity
in robotics and reckon the need of further investing on securing these
technologies. Previous attempts to review the security of robots via offensive
exercises or tools include [11], [12], [13], [14], [15], [16] which mostly focus on
proof-of-concept attacks and penetration testing, detecting flaws in the Robot
Operating System (ROS) [18]. A recent study [17] mentions the identification of
several flaws within the ROS-Industrial codebase however it does not explicitly
describe exploitable ROS-specific flaws. Considerations are made with regard to
the open and insecure architecture predominant in ROS-Industrial deployments
throughout its open source drivers. From interactions with the authors of
[17] it was confirmed that the reported security issues were made generic on
purpose, further highlighting the need for further investment on understanding
the security landscape of ROS-Industrial setups.

More recent research [8] showed that while ROS is rapidly becoming a standard in
robotics (including its growing use in industry), the commonly held assumption
that robots are to be deployed in closed and isolated networks does not hold
any further and while developments in ROS 2 show promise, the slow adoption
cycles in industry will push widespread ROS 2 industrial adoption years from
now. Authors at [8] claim that ROS will prevail in the meantime and they wonder
whether ROS be used securely for industrial use cases even though its origins
did not consider it. [8] Analyzes this question experimentally by performing a
targeted offensive security exercise in a synthetic industrial use case involving
ROS-Industrial and ROS packages. The scenario is configured following common
OT and ICS practices (including segmentation, segregation and an overall
hardening). The authors of [8] select one of the most common industrial robots
with ROS-Industrial support and configure an industrial environment applying
security measures and recommendations. The exercise results into 4 groups of
attacks which all manage to compromise the ROS computational graph and all
except one take control of most robotic endpoints at desire.

Figure 1. depicts the current landscape of OT environments when augmented
with a security specific solution, namely Kaspersky’s Kaspersky Industrial
CyberSecurity (KICS). KICS is able to monitor and detect security threats at
the network level efficiently, complying with the demands of many industrial
automation processes. However the robot endpoints, if present, are often left
aside. As discussed in [19], “the lack of security has safety repercussions” and
both manufacturers as well as industry-owners will need to apply a security-
first approach.

Introduction

Figure 1. Use case architecture diagram of an OT environment when
augmented with a professional cybersecurity solution.

8 9

Securing robot endpoints in Operational Technology (OT) enviroments
Extending KICS with the Robot Immune System (RIS)

Securing robot endpoints in Operational Technology (OT) enviroments
Extending KICS with the Robot Immune System (RIS)

Safety standards in robotics require security

IEC 61508 “Functional Safety of Electrical/Electronic/Programmable Electronic
Safety-related Systems” is a meta-standard for safety and from where most
functional safety norms grow. This is the case for ISO 26262 (automotive),
IEC 61511 (industrial processes), IEC 61513 (nuclear industry) or EN 50126/8/9
(railways), among others.

IEC 61508 indicates the following in section 7.4.2.3:

“If the hazard analysis identifies that malevolent or unauthorised
action, constituting a security threat, as being reasonably
foreseeable, then a security threats analysis should be carried out.”

Moreover, section 7.5.2.2 from IEC 61508 also states:

“If security threats have been identified, then a vulnerability analysis
should be undertaken in order to specify security requirements.”

which translates to security requirements. Note these requirements are
complementary to other security requirements specified in other standards
like IEC 62443, and specific to the robotic setup in order to comply with the
safety requirements of IEC 61508. In other words, safety requirements demand
for security requirements, which are specific to the robot and influenced by
security research. Periodic security assessments should be performed and as
new vulnerabilities are identified, they should be translated into new security
requirements.

“safety requirements demand for security
requirements, which are specific to the robot and
influenced by security research. Periodic security

assessments should be performed and
as new vulnerabilities are identified, they should be

translated into new security requirements”.

More importantly, the fulfillment of these security requirements to maintain
the robot protected (and thereby safe) will demand pushing the measures to
the robot endpoint. To meet functional safety standards demand and prevent
safety hazards from happening, the effective measures, along with network-
based monitoring solutions and endpoint protection for PC-based industrial
hosts, should include a security mechanism that protects the robot endpoints,
a Robot Endpoint Protection Platform (REPP).

In order to tackle these security requirements and protect robots from inside-
out, we will use the first instance of such REPP systems, namely, Alias Robotics’
Robot Immune System (RIS).

To prevent safety hazards from happening, the
effective measures should include a security mechanism

that protects the robot endpoints, a Robot Endpoint
Protection Platform (REPP)

Objectives and Goals

In light of the results of all these past studies and the requirements from
standards, it appears that results do not favour the secure use of robots in OT
environments today unless additional security measures are implemented.

The present study enhances a simplified version of the environment selected at
[8] with additional security measures, namely Kaspersky’s Kaspersky Industrial
CyberSecurity (KICS) and Alias Robotics’ Robot Immune System (RIS). The main
objective is to study how to further enhance the cybersecurity measures of
an OT environment with commercial cybersecurity solutions to guarantee that
robots can conduct their operation securely.

We will proceed as follows:

 - We will describe in more detail the use case and all the components involved,
including a short description of the virtualization used throughout the study to
accelerate the production of results.

 - We will then perform a series of attacks that will allows us to determine
whether the proposed security mechanisms

 - Finally, we will provide a series of recommendations for future work that
will further optimize the overall security posture of OT environments and its
lifecycle.

https://aliasrobotics.com/ris.php

10 11

Securing robot endpoints in Operational Technology (OT) enviroments
Extending KICS with the Robot Immune System (RIS)

Securing robot endpoints in Operational Technology (OT) enviroments
Extending KICS with the Robot Immune System (RIS)

Figure 2. depicts the use case considered for this study which includes KICS
and RIS cybersecurity solutions:

Figure 2. Use case architecture diagram of this study. The synthetic scenario presents
a network segmented in 5 levels with segregation implemented following
recommendations in NIST SP 800-82 and IEC 62443 family of standards. There
are three identical collaborative robots from Universal Robots presenting
a variety of networking setups and security measures, each connected to
their controller. The scenario is augmented with two professional industrial
cybersecurity solutions: a) Kaspersky’s Kaspersky Industrial CyberSecurity
(KICS) and b) Alias Robotics’ Robot Immune System (RIS).

Use case2
Components

Robot Immune System (RIS)

The Robot Immune System (RIS) is a security certified software solution that
protects robots and robot components against malware. Inspired by nature, it
gets installed directly into the selected robotic system. More particularly, RIS
is a Robot Endpoint Protection Platform (REPP), an integrated suite of endpoint
protection technologies for robots —including a next-gen antivirus, hardening
for known flaws, data encryption, intrusion prevention mechanisms, data loss
prevention, etc.— that detects, prevents, stops and informs on a variety of
threats that affect the robotic system. Its main capabilities include:

 An adaptive firewall that blocks unexpected communications. Simple
 adaptation on-the-go.

 Robot-specific hardening. Enforces security policies, patches known
 vulnerabilities and removes unnecessary communications, often left in
 robotic systems for development or debugging purposes.

 Secure logging. A forensics-oriented module that registers and records
 all incoming communications and internal interactions.

 A robot-specific visualization module that allows seamless interaction
 with RIS. Re-train and control the security notifications with and within
 the robot.

 A series of machine learning techniques grouped as an Artificial Immune
 System (AIS) that continuously adapt the response of RIS to incoming
 security threats.

https://aliasrobotics.com/ris.php

12 13

Securing robot endpoints in Operational Technology (OT) enviroments
Extending KICS with the Robot Immune System (RIS)

Securing robot endpoints in Operational Technology (OT) enviroments
Extending KICS with the Robot Immune System (RIS)

Kaspersky Industrial CyberSecurity (KICS) is a holistic solution for industrial
infrastructures. The solution consists of three components:

 KICS for Nodes – a component for industrial network endpoint protection
 (such as engineering stations, operator stations, SCADA servers)

 KICS for Networks – a component for industrial network monitoring with
 network integrity checking and deep application protocol inspection
 capabilities (IEC 60870-5-104, IEC 61850, etc. for electric power
 infrastructures

 Kaspersky Security Center – a centralized security management software
 that provides capabilities for systems management, policy management,
 reporting, notification and SIEM integration.

The three components are treated in more detail below:

Kaspersky Security Center

From [1], Kaspersky Security Center (KSC) is designed for centralized execution
of basic administration and maintenance tasks in an organization’s network. The
application provides the administrator access to detailed information about the
organization’s network security level and allows configuring all the components
of protection built using Kaspersky Lab applications.

KCS provides the following functionality:

 Systems management
 Centralized system data collection
 Centralized software deployment
 Vulnerability detection & patch management
 Extended client management capabilities

 Policy management
 Centralized security policy management
 Remote task scheduling and execution

 Reporting and notification
 Event logging
 Dashboards and reports
 SMS/Email notifications

 SIEM integration
 ArcSight, Splunk, QRadar
 Syslog Server

Kaspersky Industrial CyberSecurity (KICS)
In addition, KSC supports centralized deployment and management of the several
Kaspersky Lab applications [4] summarized in Appendix D. The API for integration
with KSC is included in the distribution kit. Particularly and as described at [1], the file
kscopenapi.chm contains the description of the API which can be used for integration
of third party applications.

One must note that KSC is aimed at basic administration and maintenance tasks
of the overall Kaspersky ICS deployment but it is not a requirement for the use of
individual selected applications. This being the case, for simplicity, we decided NOT
to use KSC within our setup.

Kaspersky Industrial CyberSecurity for Networks (KICS for Networks)

According to [2], Kaspersky Industrial CyberSecurity for Networks is an application
designed to protect the infrastructure of industrial enterprises from information
security threats, and to ensure uninterrupted process flows. Kaspersky Industrial
CyberSecurity for Networks analyzes industrial network traffic to monitor the activity
of devices in the industrial network, detect prohibited system commands transmitted
or received by devices, and detect attempts to set incorrect process parameter values.
The application is part of the solution known as Kaspersky Industrial CyberSecurity
(KICS). It performs the following functions:

 Asset discovery. Passive OT assets identification and inventory

 Deep packet inspection. Almost real-time technical process telemetry analysis

 Network integrity control. Detects unauthorized network hosts and flows

 Intrusion detection system. Alarms signs of offensive network actions

 Command control. Inspects commands over industrial protocols

 External systems. External detection technologies API integration

 Machine learning for anomaly detection (MLAD). Finds cyber or physical
 violations through real-time telemetry & historical data mining (Recurrent
 Neural Network)

The API for interacting with KICS for Networks is available at [3].

14 15

Securing robot endpoints in Operational Technology (OT) enviroments
Extending KICS with the Robot Immune System (RIS)

Securing robot endpoints in Operational Technology (OT) enviroments
Extending KICS with the Robot Immune System (RIS)

Kaspersky Industrial CyberSecurity for Nodes

Kaspersky Industrial CyberSecurity for Linux Nodes (or KICS for Nodes) [5]
protects computers running Linux operating systems against malware providing
the following capabilities.
The ones highlighted have been enabled:

KICS for Linux Nodes can be managed by using the following methods:

 From the command line using the application control commands [6].

 Via Kaspersky Security Center.

 Using graphical user

ID Task name Description

1 File Threat
Protection

File Threat Protection task prevents infection of the file sys-
tem of the computer. The task resides in the computer’s RAM
and scans all opened, saved, and active files.

2 Virus scan A virus scan is a one-time full or custom scan of files on a
computer performed by Kaspersky Industrial CyberSecurity for
Linux Nodes.

3 Custom scan Similar to “Virus scan” but targeted to specific files.

4 Boot sector s
can

Boot sector scan task lets you scan boot sectors while not
specifying a scan scope.

5 Process memory
scan

Process memory scan task lets you scan the process memory
and kernel memory while not specifying a scan scope.

6 Update Updating the databases and application modules of Kaspers-
ky Industrial CyberSecurity for Linux Nodes to ensure up-to-
date protection on your computer.

7 Rollback A task that helps to roll back the databases to their previous
versions.

8 License Manage Kaspersky Industrial CyberSecurity for Linux Nodes
keys and activation codes

9 Storage
management

Storage is a list of backup copies of files that have been deleted
or modified during the disinfection process. Backup copy is a
file copy created at the first attempt to disinfect or delete this
file. Backup copies of files are stored in a special format and
do not pose a threat.

10 System Integrity
Monitoring

The System Integrity Monitoring task is designed to track
actions performed with the files and directories in the
monitoring scopes specified in the task settings.

11 Firewall
Management

Firewall Management detects all network connections of the
user’s computer and provides a list of IP addresses, as well as
an indication of the status of the default network connection.

12 Anti-Cryptor The Anti-Cryptor task allows you to protect your files in the
local directories with network access by SMB/NFS protocols
from remote malicious encrypting.

13 Web Threat
Protection

Scans the inbound traffic and prevents downloads of malicious
files from the Internet while also blocks malicious, phishing,
adware, or other dangerous websites.

14 Device Control Manages user access to devices that are installed on or
connected to the computer (for example, hard drives, smart
card readers, or Wi-Fi modules).

15 Removable drivers
scan

Scans a connected device and its boot sectors for viruses
and other malware. The following removable drives may be
scanned: CDs, DVDs, Blu-ray discs, flash drives (including USB
modems), external hard drives, and floppy disks.

16 Network Threat
Protection

Scans inbound network traffic for activity that is typical of
network attacks. Particularly, this task scans inbound traffic
only for 80, 139, 445, and 8080 TCP ports.

17 Container scan Scans Docker containers, images, and name spaces for viruses
and other malware.

18 Custom Container
scan

Scans Docker containers and images for viruses and other
malware. You can run multiple custom Container Scan
tasks simultaneously. A custom Container Scan uses the
same parameter values as “Container_Scan”, except for the
parameter ScanPriority=Normal. The custom task does not
scan name spaces.

19 Behavior Detection The Behavior Detection task monitors malicious activity in
the operating system. If the malicious activity is detected,
Kaspersky Industrial CyberSecurity for Linux Nodes terminates
that process.

16 17

Securing robot endpoints in Operational Technology (OT) enviroments
Extending KICS with the Robot Immune System (RIS)

Securing robot endpoints in Operational Technology (OT) enviroments
Extending KICS with the Robot Immune System (RIS)

Robot controller n (Cn)

The robot controller accessible locally via physical
means (e.g. USB ports or Ethernet ports) or its
local network connections. A simulated version of
the robot controller will be developed to speed up
testing. Such simulation will be used throughout the
exercise and will expose the same services (with the
same software versions) and networking ports that
the real robot controller does. The controller includes
by default no security measures enabled. It must be
noted that past work reported several flaws affecting
this controller which have yet to be patched. Each
controller is assumed to run firmware version 3.13.0
from Universal Robots.

Hardened robot controller n (Cn)

A hardened version of the robot controller. The
hardening is implemented via the deployment of the
Robot Immune System (RIS) and includes patches
for known flaws in the controller’s services and
processes, strict access control, an embedded
adaptative firewall, an Intrusion Detection System
(IDS), a secure logging mechanism, and a series of
techniques that learn from usual interactions (by
capturing network and system’s information) while
developing a pattern for detecting common and
uncommon behaviors.

Hardware:
Universal Robots controller
CB3.1

Entry points:
 Teach pendant
 Ethernet port
 USB port (in the teach pendant)

 Local area network

Security measures:
None

Hardware:
Universal Robots controller
CB3.x

Entry points:
 Teach pendant (hardened)

 Ethernet port (hardened)

 USB port (in the teach pendant)
(hardened)

 Local area network (filtered)

ROS driver: None

Security measures:
Access control, security
patches, IDS, adaptative IDS,
secure logging, network filtering

+
+

PLC

Robot controller

Robot

PLC

A Programmable Logic Controller (PLC) or
programmable controller is an industrial digital
computer which has been ruggedized and adapted
for the control of manufacturing processes. PLCs
operate such as assembly lines, or robotic devices,
or any activity that requires high reliability, ease of
programming and process fault diagnosis. PLCs are
connected to sensors and actuators in the control
process and are networked to the supervisory
system (SCADA). In factory automation, PLCs
typically have a high speed connection to the SCADA
system. In remote applications, such as a large
water treatment plant, PLCs may connect directly
to SCADA over a wireless link, or more commonly,
utilise an RTU for the communications management.
PLCs are specifically designed for control and
were the founding platform for the IEC 61131-3
programming languages.

Robot n (Rn)

The robot (generally only the mechanical side of it and
the embed sensors). In this case, given the use case the
robots will represent CB3.1 series Universal Robots robots
(UR3s, UR5s or UR10s). Communication with the controller
happens over an industrial bus. No security measures are
enabled within the hardware as far as our inspection went.

R2

Hardware:
UR3, UR5 or UR10

Entry points:
 Fieldbus
 Physical attacks

Security measures:
None

Control station

Control station n (Sn)

Linux-based control station from where to operate
the robot controller (and coherently, the robot
mechanics). The station will be based on Ubuntu
Bionic (18.04 LTS), include ROS Melodic Morenia
and the ROS Industrial drivers for Universal
Robots, communicating with the robot controller
via a local area network. No wireless connectivity
is assumed. Control stations are simulated with
limited resources. Particularly, we assign each 4
CPUs and 4096 MB of RAM. Beyond the defaults,
no particular security measures are applied into
the control stations.

Hardened control station n (Sn)

A hardened Linux-based control station from
where to operate the robot controller (and
coherently, the robot mechanics). The station will
be based on Ubuntu Bionic (18.04 LTS), include
ROS Melodic Morenia and the ROS Industrial
drivers for Universal Robots, communicating
with the robot controller via a local area
network. Security measures applied follow the
recommendations of Canonical’s report on how
to secure ROS robotics platforms in Ubuntu
Bionic 18.04 Linux distribution. On top of these
measures, the configuration of the hardened
stations was further enhanced using. No wireless
communications are assumed to be enabled in the
hardened controls stations.

Hardware:
Industrial-grade PC
CPU: 4 cores
RAM: 4096 MB

Entry points:
Physical access (digital I/O,
local area network interfaces, storage
devices, etc.)

Local area network

ROS driver:
ur_modern_driver
Universal_Robots_ROS_Driver

Security measures:
None

Hardware:
Industrial-grade PC
CPU: 4 cores
RAM: 4096 MB

Entry points:
Physical access (digital I/O,
local area network interfaces, storage
devices, etc.)

Local area network

ROS driver:
ur_modern_driver
Universal_Robots_ROS_Driver

Security measures:
See sections below for more
details.

Control
station

Control
station

https://aliasrobotics.com/ris.php

18 19

Securing robot endpoints in Operational Technology (OT) enviroments
Extending KICS with the Robot Immune System (RIS)

Securing robot endpoints in Operational Technology (OT) enviroments
Extending KICS with the Robot Immune System (RIS)

Central control station Development machine

Central control station n (Cn)

Linux-based central control station from where
to command other ROS-enabled enpoints (such
as the ROS drivers enabled on each sub-control
station). The station will be based on Ubuntu Bionic
(18.04 LTS), include a ROS Melodic Morenia and
ROS-Industrial packages, communicating with the
robot controller via a local area network. Technical
specifications and security measures of the central
control station are the same as of hardened control
stations Sˆ n above. The central control station
is assumed unique in the networking setup and
wherein the ROS Master process will be running (in
other words, all other ROS-enabled machines will
be acting as slaves).

Hardware:
Industrial-grade PC
CPU: 4 cores
RAM: 4096 MB

Entry points:
Physical access (digital I/O,
local area network interfaces, storage
devices, etc.)

Local area network

ROS driver:
ur_modern_driver
Universal_Robots_ROS_Driver

Security measures:
See sections below for more
details.

Control
station

Development station n (Dn)

Linux-based development station from where
to develop additional features, monitor and/
or introspect the robotic setup. The station will
be based on Ubuntu Bionic (18.04 LTS), includes
ROS Melodic Morenia, Gazebo 9 and the ROS
Industrial drivers for Universal Robots. A Gazebo
simulated instance of the robot will be used for
development purposes. Beyond the defaults, no
particular security measures are applied into the
development station.

Hardware:
General purpose PCCPU:
CPU: 4 cores
RAM: 4096 MB

Entry points:
Physical access (digital I/O,
local area network interfaces, storage
devices, etc.)

Local area network

ROS driver:
ur_modern_driver
Universal_Robots_ROS_Driver

Security measures:
None

Development station

+ +

Virtualization

Due to the expensive price of building a complete real industrial setup including
the control stations, controllers, robots, HMIs, PLCs and other equipment,
frameworks started appearing which propose a high-fidelity computer
virtualization designed to support rapid, parallel experimentation with the
automated design of software agents in mind. By leveraging virtualization,
we can create a high-fidelity clone of the OT environment. With this security
researchers can distribute the work and perform experiments to see how the
environment and its security measures respond to certain kinds of attacks.

Virtualization is a commonly used technique in other areas allowing developers
and security practitioners to more easily test, reuse and ship systems. When
using virtualization, there are often two approaches, emulation and simulation.
Emulation is generally implemented through hardware-virtualization, typically
using full-virtualization with type two hypervisors (e.g. VirtualBox, VMWare
Workstation or QEMU), commonly referred to as Virtual Machines (VMs). This
provides complete isolation between guest kernels and the host, while allowing
to run many different operating Systems (OS) within the same physical host.

Simulation is often implemented with simpler abstractions such as state machines or
through OS-virtualization, using a shared kernel across both the host and guests. OS-
virtualization is typically referred to as “containers” in Linux, and is widely considered
the most efficient virtualization method for its highest performance and fastest
“start-up” time.

In this study we use the alurity toolbox [8] to create a virtual OT environment as
depicted in Figure 2. The virtualization happens at both hardware and software levels
using emulation and simulation, respectively. The whole virtualization of the scenario
can be reproduced with a simple YAML file which is shared and available in Appendix
A.

For simplicity and focus, the virtual environment does not include KSC. As noted above,
KSC is focused on basic administration and maintenance tasks across Kaspersky Lab
applications. Since the purpose of this exercise is to test and evaluate the security
offered by KICS in relation to the robotic endpoints only KICS for Networks and Nodes
have been used.

https://aliasrobotics.com/alurity.php

20 21

Securing robot endpoints in Operational Technology (OT) enviroments
Extending KICS with the Robot Immune System (RIS)

Securing robot endpoints in Operational Technology (OT) enviroments
Extending KICS with the Robot Immune System (RIS)

In order to analyze the security of the robotic endpoints, the following
subsections describe different attack vectors considered on the synthetic OT
environment constructed Figure 2.

In this vector we consider a path that begins from an attacker with access to a
machine that has network connectivity with endpoints in the Process Network
(Level 2). This could be a device either inside of the Process Network itself or in
any other segment with the capability of reaching the Process Network. Details
of the particular entry point and method for scaling privileges to gain network
capabilities on it are beyond the scope of this study.

In our proof-of-concept attack, the attacker leverages RVD#1489 and launches
an exploit that exfiltrates intellectual property.

KICS for Networks was previously trained (in Learning mode) and configured to monitor
the network (in Monitoring mode). Correspondingly, since there’s a KICS sensor
placed in that Process Network segment, KICS for Networks successfully manages
to detect the unusual behavior and raises an event indicating “Detected attempted
network interactions from IP …”. The attacker is able to retrieve the intellectual
property leveraging vulnerability RVD#1489. The following trace retrieved from KICS
from Networks shows this particular network exchange:

The same situation was confirmed with other vulnerabilities affecting the selected
robotic endpoints including RVD#1406, RVD#1410, RVD#1412 or RVD#1413, among
others.

Attacking an OT environment with
robots

3

ATTACK VECTOR 1: Process network insider

Figure 3.

Figure 4.

Detection of an incident as a result of an attacker leveraging RVD#1489. KICS
for Networks shows how after a previous training phase (“Learning” mode) and
once it has entered its “Monitoring” mode, it successfully detects unexpected
network attempts. The menu on the right allows to handle the status of the
event and/or introspect the impacted assets or the network traffic involved.

Network traffic resulting from an attacker exfiltrating Intellectual Property
from robot leveraging RVD#1489. KICS for Networks allows to easily download
the traffic that corresponds to a particular event or incident which simplifies
significantly the aftermath research of a security breach or cyberattack (incident
response).

Based on these results we argue that in order to not only
detect timely but also to prevent network attacks on ro-
botic endpoints and safety, additional security solutions

should be in place which demands for additional security
solutions

https://github.com/aliasrobotics/RVD/issues/1489
https://github.com/aliasrobotics/RVD/issues/1489
https://github.com/aliasrobotics/RVD/issues/1406
https://github.com/aliasrobotics/RVD/issues/1410
https://github.com/aliasrobotics/RVD/issues/1412
https://github.com/aliasrobotics/RVD/issues/1413

22 23

Securing robot endpoints in Operational Technology (OT) enviroments
Extending KICS with the Robot Immune System (RIS)

Securing robot endpoints in Operational Technology (OT) enviroments
Extending KICS with the Robot Immune System (RIS)

In this attack vector we consider a compromised controller that includes no
additional security measures. In particular, we assume the attacker compromises
C1 as depicted in Figure 5.:

ATTACK VECTOR 2: Controller insider

Figure 5. Figure 5. Entry point of an attacker acting as a controller insider and illustrating
how KICS gets no visibility. The attacker could gain access to the controller by
either a) exploiting existing and known vulnerabilities in the controller directly
or b) moving laterally using previously mentioned flaws affecting networking
exposed services.

Compromising C1 can happen in a variety of ways and either by exploiting known and
previously mentioned network vulnerabilities (while moving laterally) or by leveraging
other flaws including the widely known RVD#672 or RVD#1408, an attacker could
easily gain control of C1 with root privileges. From this point on, the robot could be
commanded as desired and safety could be compromised easily.

In our case KICS for Networks has no sensors installed at the Level 2 network, and
doesn’t monitor traffic coming out of robot controllers towards the robot mechanics
and control stations and is thereby unable to detect attacks that originate from the
following endpoint pairs of our environment affecting control stations, controllers
and robots: S2-C2, C2-R2, C3-R3

Access to the controller implies complete control of the robot in most cases. The
lack of security measures in robot controller endpoints, together with no detection
capabilities makes them an interesting target for attackers, especially given their
strategic value in an OT production environment. Attackers will leverage these
weaknesses to deploy malware targeting robots. An example of such was illustrated
in [20] with the Akerbeltz robot ransomware, where a robot-specific ransomware was
developed and demonstrated to block the robot, encrypting IP and demand a ransom
to unlock the machine.

Based on the evidence collected, it becomes clear the need of securing the robot
controllers. This was validated by RIS deployed in C2 and C3, protecting them
proactively and deploying security measures directly at the controller endpoint. With
RIS, robot controllers C2 and C3 remained resilient to the same attacks, preventing
any safety hazards while informing operators of any suspicious activity as illustrated
in Figure 6.

The lack of sensors monitoring traffic coming out of robot
controllers needs to be complemented with additional

solutions that protect robot endpoints.
That’s where Alias Robotics’ RIS comes to play

With RIS complementing KICS, robot controllers C2 and
C3 remained resilient to the same attacks, preventing

any safety hazards

https://github.com/aliasrobotics/RVD/issues/672
https://github.com/aliasrobotics/RVD/issues/1408

24 25

Securing robot endpoints in Operational Technology (OT) enviroments
Extending KICS with the Robot Immune System (RIS)

Securing robot endpoints in Operational Technology (OT) enviroments
Extending KICS with the Robot Immune System (RIS)

With the advent of ROS in industry and professional use, security of ROS networks
becomes a relevant matter. We deployed a ROS network in our scenario Figure 2.
wherein S7 acts as the ROS Master and other stations, including S2 (both hardened
by KICS for Nodes) act as slaves deploying ROS nodes. Figure 7. depicts a simplified
ROS computational graph where the interactions between the ROS Master and the
ROS Slave APIs are illustrated.

In ROS, nodes intercommunicate through an API (the ROS API) via XML-RPC, a remote
procedure call protocol using XML encoding, as well as message/service data exchanges
using transport libraries such as ROSTCP or ROSUDP for serialization over IP sockets.
All network traffic is transmitted in clear text and in addition, no integrity check is
performed on received. Overall, this makes ROS a target for packet sniffing and man-
in-the-middle attacks, resulting in an absence of native network confidentiality and
data integrity.

The ROS communication model imposes strong restrictions on how network interaction
between nodes work and the exchange of data between both. More particularly, the
ROS API (Master, Slave and Parameter sub-APIs) via XMLRPC followed by the UDP or
TCP sockets (through ROSUDP or ROSTCP transport libraries) require network visibility
between each nodes and the Master, as well as between endpoints exchanging data.
Figure 8. depicts this while showing a simple talker/listener example, common in the
ROS community.

Figure 6. Robot Immune System (RIS) visualization depicting how it detects an attack
attempt in the targeted robot. The RIS hardening module mitigates flaws and
prevents attackers from exploiting them. In the figure the visualization module
displays the attack attempt and provides operators with additional information
and options on how to handle the incident.

The Robot Operating System (ROS) [21] is the de facto framework for robot
application development. At the time of writing, the original ROS article has been
cited more than 7600 times, which shows its wide acceptance for research and
academic purposes. ROS’ popularity has continued to grow beyond research
and into industry while supported by projects like ROS-Industrial (ROS-I for
short), an open-source initiative that extends the advanced capabilities of ROS
software to industrial relevant hardware and applications.

ROS was not designed with security in mind, but as it started being adopted
and deployed into products or used in government programs, more attention
was placed on it however, at the time of writing, none of the past security
efforts remain actively maintained and no official ROS security solution exists
today. Moreover, recent research reports [22] indicate that as-is, ROS can’t be
used securely.

ATTACK VECTOR 3: compromising the ROS network

Figure 7. ROS computational graph. The computational graph models the nodes executing
tasks with their topics, services and other abstractions.

26 27

Securing robot endpoints in Operational Technology (OT) enviroments
Extending KICS with the Robot Immune System (RIS)

Securing robot endpoints in Operational Technology (OT) enviroments
Extending KICS with the Robot Immune System (RIS)

Figure 8. ROS computational model and APIs. The three APIs are exemplified using the
common talker/listener computational graph which involves two nodes (a talker
and a listener) and the Master.

To date KICS doesn’t support the dynamic nature of the ROS networks (new
connections on arbitrary TCP/UDP ports). The support will be considered in
the future work, that might include a deep packet inspection module for ROS
communications in KICS for Network and a submodule in KICS for Nodes that
leverages the ROS API, becoming a first class participant of the ROS computational
graph and thereby becoming capable of relying relevant information to the
centralized security core for autonomous rule generation on-the-go. Such an
approach was implemented as part of the RIS for ROS solution available for
Kinetic Kame and Melodic Morenia distros

It is technically non-trivial to protect ROS Networks via
host-based firewalls or network monitoring solutions. The
rules generated by KICS while ‘Learning’ are mostly static

and do not capture the complexity of the ROS computational
graph. Future versions of KICS might extend the current

capabilities in a follow up collaboration.

Figure 9. Rules generated by KICS for Networks while learning the interactions of a
simplified ROS computational graph. The amount of rules grows rapidly as ROS
nodes in the graph exchange information. For each new connection, new rules
are created. The rules generated are static and specific to each connection,
which conflicts with the dynamic nature of the ROS API and its computational
graph.

Figure 10. Example of a KICS for Networks rule that permits ROS interactions without
false positives. The rules that permit fluent ROS communications are at the
time of writing generic.

28 29

Securing robot endpoints in Operational Technology (OT) enviroments
Extending KICS with the Robot Immune System (RIS)

Securing robot endpoints in Operational Technology (OT) enviroments
Extending KICS with the Robot Immune System (RIS)

Conclusions and future work4

The results acquired through past sections led us to conclude that the
combination of the Robot Immune System (RIS, on each robot endpoint)
together with the Kaspersky Industrial Cybersecurity (KICS) managed to jointly
secure robot endpoints in OT environments.

KICS (and particularly KICS for Networks and Nodes) qualifies nicely as an
industrial-grade solutions to monitor environments with robotic endpoints;
however beyond monitoring general industrial networks, additional security
means must be used in combination with KICS to prevent robots from being
compromised and cause safety hazards. We confirmed this with attacks targeting
robot controllers and ROS networks. We also verified that the addition of RIS
as a complementary solution successfully protects robot endpoints, mitigating
the cybersecurity flaws of the selected robot endpoints and fulfilling the safety
requirements.

We collected evidence in a synthetic scenario and shared implementation
details in Appendix A. From all of it, we learned the following:

 KICS for Networks succesfully detects network attacks, even those
 targeting robotic endpoints if the attack uses a channel sensed by KICS.

 KICS for Nodes hardens control stations successfully and prevents them
 from being affected by attacks. ROS can be embedded into such
 hardened-stations.

 RIS enhancing KICS prevents attacks and protects robot endpoints.

 RIS for UR protects the robot endpoints against targeted attacks and
 can be used in combination with KICS for securing OT environments with
 robot endpoints.

 The protection of ROS networks requires an extension of KICS for
 Networks that grasps the complexity of the ROS API. RIS for ROS follows
 such an approach and delivers an alternative protection for control
 stationsagainst targeted attacks.

the addition of RIS as a complementary solution (to
KICS) successfully protects robot endpoints, mitigating
the cybersecurity flaws of the selected robot endpoints

and fulfilling the safety requirements.

The general posture of KICS aligns nicely with the specific characteristics of RIS.
Note that RIS is available for different robots and robot components, always targeting
specific versions. At the time of writing the following options are publicly available for
robot endpoints:

For each one of these endpoints, RIS provides a security-in-depth solution that collects
a significant amount of information, currently not being pushed to a centralized
security management system. Future work may look into this aspect and leverage
this information at the endpoint for an overall enhanced security posture.

Figure 11. summarizes the synthetic OT environment studied and includes some
additional interactions specific to KICS, as well as some desired communication
paths between KICS and RIS for enhanced security.

Aligned with these thoughts of an enhanced security posture, future research may
focus on the following items:

 - Interoperability between RIS and KICS for Nodes to harden the
 communication paths in between control stations and controllers.

 - Interoperability between RIS, KICS for Nodes and KICS for Networks to
 register network interactions without the need of placing additional
 endpoint-specific KICS sensors.

 - Security management of RIS via KSC to deliver updates, patches and
 new vulnerability mitigations.

 - Integrate RIS for ROS into KICS for Nodes, enabling KICS to secure ROS
 computational graphs.

Figure 11. Robots and robot components supported by RIS. RIS currently supports several
robots and robot components including collaborative robot manipulators
(cobots), Autonomous Mobile Robots (AMRs) and frameworks like ROS.

30 31

Securing robot endpoints in Operational Technology (OT) enviroments
Extending KICS with the Robot Immune System (RIS)

Securing robot endpoints in Operational Technology (OT) enviroments
Extending KICS with the Robot Immune System (RIS)

 References5

Kaspersky. Kaspersky Support Center 11. Retrieved 22-08-2020 from
https://support.kaspersky.com/KSC/11/en-US/5022.htm

Kaspersky. Kaspersky Support Center 11. Retrieved 22-08-2020 from
https://support.kaspersky.com/KSC/11/en-US/5022.htm

Kaspersky. Kaspersky Industrial CyberSecurity for Networks. User Guide
Application version: 2.8

Kaspersky. Industrial CyberSecurity for Networks API Developer’s Guide.
Retrieved 22-08-2020 from
https://support.kaspersky.com/KICSforNetworks/2.9API/en-US/55937.htm

Kaspersky. List of supported Kaspersky Lab applications.
Retrieved 23-08-2020 from
https://support.kaspersky.com/KSC/11/en-US/172903.htm

Kaspersky. Kaspersky Industrial CyberSecurity for Linux Nodes 1.0.
Retrieved 03-09-2020 from
https://support.kaspersky.com/KICS4Linux/1.0/en-US/192756.htm

Kaspersky. Managing Kaspersky Industrial CyberSecurity for Linux Nodes tasks
using command line. Retrieved 03-09-2020 from
https://support.kaspersky.com/KICS4Linux/1.0/en-US/161263.htm

Kaspersky. Kaspersky Industrial CyberSecurity for Networks.
Retrieved 03-09-2020 from
https://support.kaspersky.com/KICSforNetworks/2.9/en-US/83112.htm

Mayoral-Vilches, V., Abad-Fernández, I., Pinzger, M., Rass, S., Dieber, B., Cunha, A.,
... & Gil-Uriarte, E. (2020). alurity, a toolbox for robot cybersecurity. arXiv pre print
arXiv:2010.07759.
https://arxiv.org/pdf/2010.07759.pdf

L. Alzola Kirschgens, I. Zamalloa Ugarte, E. Gil Uriarte, A. Muñiz Rosas, and V.
Mayoral Vilches, “Robot hazards: from safety to security,” ArXiv e-prints, Jun.2018.

G. Lacava, A. Marotta, F. Martinelli, A. Saracino, A. La Marra, E. Gil-Uriarte, and V.
M. Vilches, “Current research issues on cyber security in robotics,” 2020.

J. McClean, C. Stull, C. Farrar, and D. Mascareñas, “A preliminary cyber-physical
se-curity assessment of the robot operating system (ros),” in Unmanned Systems
Technolo-gy XV, vol. 8741. International Society for Optics and Photonics, 2013,
p. 874110.

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

G. Olalde Mendia, L. Usategui San Juan, X. Perez Bascaran, A. Bilbao Calvo, A.
Hernández Cordero, I. Zamalloa Ugarte, A. Muñiz Rosas, D. Mayoral Vilches, U.
Ayucar Car-bajo, L. Alzola Kirschgens, V. Mayoral Vilches, and E. Gil-Uriarte, “Robotics
CTF (RCTF), a playground for robot hacking,” ArXiv e-prints, Oct. 2018.

T. Olsson and A. L. Forsberg, “Iot offensive security penetration testing.”

V. Mayoral-Vilches, L. U. S. Juan, U. A. Carbajo, R. Campo, X. S. de Cámara,
O. Urzelai, N. García, and E. Gil-Uriarte, “Industrial robot ransomware: Akerbeltz,”
arXiv preprint arXiv:1912.07714, 2019.

S. Rivera, S. Lagraa, and R. State, “Rosploit: Cybersecurity tool for ros,” in 2019 Third
IEEE International Conference on Robotic Computing (IRC). IEEE, 2019, pp. 415–416.

B. Dieber, R. White, S. Taurer, B. Breiling, G. Caiazza, H. Christensen, and A. Cortesi,
“Penetration testing rros,” in Robot Operating System (ROS). Springer, 2020,
pp. 183–225.

F. Maggi and M. Pogliani, “Rogue automation: Vulnerabile and malicious code in
industrial programming,” Trend Micro, Politecnico di Milano, Tech. Rep, 2020.

M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y. Ng,
“Ros: an open-source robot operating system,” in ICRA workshop on open source
sof-tware, vol. 3, no. 3.2. Kobe, Japan, 2009, p. 5.

Kirschgens, L. A., Ugarte, I. Z., Uriarte, E. G., Rosas, A. M., & Vilches, V. M. (2018).
RoboT hazards: from safety to security. arXiv preprint arXiv:1806.06681.

Mayoral-Vilches, V., Juan, L. U. S., Carbajo, U. A., Campo, R., de Cámara, X. S., Urzelai,
O., ... & Gil-Uriarte, E. (2019). Industrial robot ransomware: Akerbeltz. arXiv preprint
arXiv:1912.07714.

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., ... & Ng, A. Y. (2009,
May). ROS: an open-source Robot Operating System. In ICRA workshop on open
source software (Vol. 3, No. 3.2, p. 5).

Mayoral-Vilches, V., Pinzger, M., Rass, S., Dieber, B., & Gil-Uriarte, E. (2020). Can
ROS be used securely in industry? Red teaming ROS-Industrial. arXiv preprint
arXiv:2009.08211.

[12]

[13]

[14]

[15]

[17]

[16]

[18]

[19]

[20]

[21]

[22]

https://support.kaspersky.com/KSC/11/en-US/5022.htm.
https://support.kaspersky.com/KSC/11/en-US/5022.htm.
https://support.kaspersky.com/KICSforNetworks/2.9API/en-US/55937.htm
https://support.kaspersky.com/KSC/11/en-US/172903.htm
https://support.kaspersky.com/KICS4Linux/1.0/en-US/192756.htm
https://support.kaspersky.com/KICS4Linux/1.0/en-US/161263.htm
https://support.kaspersky.com/KICSforNetworks/2.9/en-US/83112.htm
 https://arxiv.org/pdf/2010.07759.pdf

APPENDICES
6 Appendices

A Alurity YAML file to reproduce use case

B Karspersky Lab Appliclations

 Alurity YAML file to reproduce use
 case

A

This file allows to reproduce the scenario used for the study titled as
“Securing robot endpoints in Operational Technology (OT) environments” which
studies how arbitrary robot endpoints are affected by known malware and how
existing industrial security mechanisms need to be extended to detect and
stop these new security threats.
#
To launch it:
alurity start -- --privileged ; alurity enter --user root; alurity stop
or:
alurity flow --user root --kill; alurity stop; alurity start -- --privileged; alurity flow --user root
#

############
Networks
############
networks:

Level 0: Field Networks
 # for each robot-controller pair, there should be a field-level network
 # however in the context of this study, they won’t be used.

 # - network:
 # - name: field-network_r1_c1
 # - driver: overlay
 # - internal: true
 # - encryption: false
 # - subnet: 11.1.0.0/24
 # - network:
 # - name: field-network_r2_c2
 # - driver: overlay
 # - internal: true
 # - encryption: false
 # - subnet: 11.2.0.0/24
 # - network:
 # - name: field-network_r3_c3
 # - driver: overlay
 # - internal: true
 # - encryption: false
 # - subnet: 11.3.0.0/24

Level 1: Control Networks, connect controllers and control stations
for each controller, we expect a dedicated control-network
 - network:
 - name: control-network_c2_s2
 - driver: overlay
 - internal: false
 - encryption: false
 - subnet: 12.2.0.0/24

Level 2: Process Network, where dedicated control stations and robots
 # interconnect for automation of processes

 # # overlay version, isolating it from the rest
 # - network:
 # - name: process-network

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

 # - driver: overlay
 # - internal: true
 # - encryption: false
 # - subnet: 13.0.0.0/24

bridge version, to interface with VMs
 - network:
 - name: process-network
 - driver: bridge
 - subnet: 13.0.0.0/24

Level 3: DMZ 2 sub-network
NOTE: used used to interface Process Network with machines in DMZ 2
(e.g. KICS for Networks, Sensor nodes, a historian, additional servers and related)

 # - network:
 # - name: dmz2
 # - driver: overlay
 # - internal: true
 # - encryption: false
 # - subnet: 14.0.0.0/24

 - network:
 - name: dmz2
 - driver: bridge
 - subnet: 14.0.0.0/24

Level 3: DMZ 1 sub-network
NOTE: used used to interface IT Network with central control station
 - network:
 - name: dmz1
 - driver: overlay
 - encryption: false
 - internal: true
 - subnet: 16.0.0.0/24

Level 4: IT Network
 - network:
 - name: it-network
 - driver: overlay
 - encryption: false
 - internal: true
 - subnet: 15.0.0.0/24

Beyond Level 4: Cloud
 - network:
 - name: cloud-network
 - driver: overlay
 - encryption: false
 - internal: false
 - subnet: 17.0.0.0/24

#################################
Firewalls and network elements
#################################
firewalls:
 - container:
 - name: firewall-it-dmz1
 - ingress: it-network
 - egress: dmz1
 - rules:
 - iptables -t nat -A POSTROUTING -o eth1 -j MASQUERADE
 - iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE
 - iptables -A FORWARD -i eth1 -o eth0 -m state --state RELATED,ESTABLISHED -j ACCEPT
 - iptables -A FORWARD -i eth0 -o eth1 -j ACCEPT
 - iptables -t nat -A POSTROUTING -o eth2 -j MASQUERADE
 - iptables -A FORWARD -i eth2 -o eth0 -m state --state RELATED,ESTABLISHED -j ACCEPT
 - iptables -A FORWARD -i eth0 -o eth2 -j ACCEPT
 - route add 13.0.0.20 gw 16.0.0.254 eth2
 - container:
 - name: firewall-process-dmz2

 - ingress: process-network
 - egress: dmz2
 - rules:
 - iptables -t nat -A POSTROUTING -o eth1 -j MASQUERADE
 - iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE
 - iptables -A FORWARD -i eth1 -o eth0 -m state --state RELATED,ESTABLISHED -j ACCEPT
 - iptables -A FORWARD -i eth0 -o eth1 -j ACCEPT

############
Containers
############
containers:

 #
 # Robots
 #
 # Robot mechanics could be represented by a machine, by a simulator or by both.
 # in this case and to optimize resources, they are not captured since the
 # end goal of the attacks finalizes with access to the controller.
 # # R1
 # - container:
 # - name: “r1”
 # - modules:
 # - base: registry.gitlab.com/aliasrobotics/offensive/alurity/alurity:latest
 # - network: field-network

 #
 # Controllers
 #
 # C1
 - container:
 - name: “c1”
 - modules:
 - base: registry.gitlab.com/aliasrobotics/offensive/alurity/robo_ur_cb3_1:3.10
 - network:
 - process-network
 # - field-network_r1_c1
 - cpus: 4
 - memory: 2048
 - extra-options: ALL

 # C^2
 - container:
 - name: “c2”
 - modules:
 - base: registry.gitlab.com/aliasrobotics/offensive/alurity/robo_ur_cb3_1:3.10
 - network:
 - control-network_c2_s2
 # - field-network_r2_c2
 - ip: 12.2.0.20 # assign manually an ip address
 - cpus: 4
 - memory: 2048
 - mount: PWD/installer_ur_220.ris:/installer_ur_220.ris
 - extra-options: SYS_PTRACE

 # C^3
 - container:
 - name: “c3”
 - modules:
 - base: registry.gitlab.com/aliasrobotics/offensive/alurity/robo_ur_cb3_1:3.10
 - network:
 - process-network
 # - field-network_r3_c3
 - cpus: 4
 - memory: 2048
 - mount: PWD/installer_ur_220.ris:/installer_ur_220.ris
 - extra-options: ALL

 #
 # Control stations
 #

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197

 # S^2
 - container:
 - name: “s2”
 - modules:
 - base: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ros:melodic-scenario # non-hardened
version
 # - base: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ros:melodic-scenario-hardened
 - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ros_ur:melodic-official-scenario
 - network:
 - control-network_c2_s2
 - process-network
 - ip:
 - 12.2.0.50 # ip for control-network_c2_s2
 # - 13.0.0.6 # ip for process-network
 - extra-options: ALL
 # S7
 - container:
 - name: “s7”
 - modules:
 - base: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ros:melodic-scenario
 - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ros_ur:melodic-official-scenario
 - network:
 - dmz1
 - process-network
 - ip:
 - 16.0.0.20 # ip in dmz1
 - 13.0.0.20 # ip in process-network
 - extra-options: ALL

 #
 # Development stations
 #
 # D1
 - container:
 - name: “d1”
 - modules:
 - base: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ros:melodic-scenario
 # - base: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ros:melodic-scenario-hardened
 - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ros_ur:melodic-official-scenario
 - network:
 - it-network
 - cloud-network
 # - process-network # bypass firewall restrictions by connecting directly
 # - ip:
 # - 13.0.0.9
 - extra-options: NET_ADMIN

 #
 # Attackers
 #
 - container:
 - name: attacker_cloud
 - modules:
 - base: registry.gitlab.com/aliasrobotics/offensive/alurity/alurity:latest
 - network:
 - cloud-network
 - extra-options: ALL

 - container:
 - name: attacker
 - modules:
 - base: registry.gitlab.com/aliasrobotics/offensive/alurity/alurity:latest
 - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/reco_nmap:latest
 - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/expl_robosploit/expl_robosploit:latest
 - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/expl_icssploit:latest
 - network:
 - dmz1
 - process-network
 - extra-options: ALL

198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268

 #
 # extra elements
 #

 # connector of
 # - it-network
 # - dmz2
 # - dmz1
 - container:
 - name: firewall-it-dmz1
 - modules:
 - base: registry.gitlab.com/aliasrobotics/offensive/projects/rosin-redros-i:firewall-three-net
 - network:
 - it-network
 - dmz2
 - dmz1
 - extra-options: NET_ADMIN
 - ip:
 - 15.0.0.254
 - 14.0.0.254
 - 16.0.0.254

 # DMZ machine
 - container:
 - name: dmz-server
 - modules:
 - base: registry.gitlab.com/aliasrobotics/offensive/projects/rosin-redros-i:dmz
 - network: dmz2
 - extra-options: NET_ADMIN
 - ip: 14.0.0.20

 # Connector of process-network and dmz2
 - container:
 - name: firewall-process-dmz2
 - modules:
 - base: registry.gitlab.com/aliasrobotics/offensive/projects/rosin-redros-i:firewall-two
 - network:
 - dmz2
 - process-network
 - extra-options: NET_ADMIN
 - ip:
 - 14.0.0.253
 - 13.0.0.254

##########################
Virtual Machines (VMs)
##########################
vms:
 #
 # KICS for Networks
 # connected to dmz2
 - vm:
 - name: kics4nets
 - path: $(pwd)/vms/kics4nets
 - network: dmz2
 - ip: 14.0.0.100
 - cpus: 8
 - memory: 8192

 #
 # KICS for Networks sensor 1
 # connected to process-network
 - vm:
 - name: sensor1
 - path: $(pwd)/vms/sensor1
 - network: process-network
 - ip: 13.0.0.101
 - cpus: 4
 - memory: 4096

269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339

#
KICS for Networks sensor 2
connected to the process-network
- vm:
- name: kics4nets_sensor2
- path: $(pwd)/vms/kics4nets_sensor2
- network: process-network
- ip: 12.2.0.4
- cpus: 4
- memory: 4096

 - vm:
 - name: kics4nodes
 - path: $(pwd)/vms/kics4nodes
 - network: process-network
 - ip: 13.0.0.100
 - cpus: 4
 - memory: 4096

 FLOWS
###

####################
Flow 1: Demonstrate basic capabilities and main elements of the environment
this flow does not perform any specific attack and only displays a basic
setup for experimentation and research
####################

flow:
 - container:
 - name: “s2”
 - window:
 - name: routing-ros-dmz
 - commands:
 - command: “sudo route add -net 13.0.0.0/24 gw 13.0.0.254 eth2”
 - command: “sudo route add -net 14.0.0.0/24 gw 13.0.0.254 eth2”
 - split: “horizontal”
 # wait for a signal in port 9999, to start launching the ROS UR driver in the designated IP address
 # , this is done so that the controller can first set up and install RIS
 - command: “apt-get update; apt-get install -y netcat && \
nc -l -p 9999 && source /opt/ros_ur_ws/devel/setup.bash && \
export ROS_MASTER_URI=’http://13.0.0.20:11311’ && roslaunch ur_robot_driver ur3_bringup.launch robot_
ip:=12.2.0.20”
 # - select: ros-driver

 - container:
 - name: “s7”
 - window:
 - name: routing-ros-dmz
 - commands:
 - command: “sudo route add -net 13.0.0.0/24 gw 13.0.0.254 eth1” # capture all traffic in the firewall
 - command: “sudo route add -net 14.0.0.0/24 gw 13.0.0.254 eth1” # reach dmz network
 - command: “sudo route add -net 14.0.0.0/24 gw 16.0.0.254 eth0”
 - command: “route add -net 15.0.0.0/24 gw 16.0.0.254 eth0” # establish bidirectional comms. with IT Ne-
twork
 - command: “source /opt/ros/melodic/setup.bash && roscore” # act as ROS master

 - container:
 - name: “d1”
 - window:
 - name: dmz-ros-it-network
 - commands:
 - command: “sudo route add -net 14.0.0.0/24 gw 15.0.0.254 eth0”
 - command: “sudo route add 13.0.0.20 gw 15.0.0.254 eth0”
 - select: dmz-ros-it-network

 # C1
 - container:
 - name: “c1”
 - window:

340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
500

 - name: auto-run
 - commands:
 - command: ‘echo -e “easybot\neasybot” | passwd’ # define default password
 - command: “mkdir /var/run/sshd && /usr/sbin/sshd” # enable default SSH port
 - command: “echo ‘2013333333’ > /root/ur-serial && truncate -s -1 /root/ur-serial”
 - command: “cd /root/.urcontrol && ln -s urcontrol.conf.UR3 urcontrol.conf”
 - select: auto-run

 # C^3 - Install RIS
 - container:
 - name: “c3”
 - window:
 - name: auto-run
 - commands:
 - command: ‘echo -e “easybot\neasybot” | passwd’ # define default password
 - command: “mkdir /var/run/sshd && /usr/sbin/sshd” # enable default SSH port
 - command: “echo ‘2013333333’ > /root/ur-serial && truncate -s -1 /root/ur-serial”
 - command: “cd /root/.urcontrol && ln -s urcontrol.conf.UR3 urcontrol.conf”
 - command: “/installer_ur_220.ris”
 - select: auto-run

 # C^2 - Install RIS and launch services, including GUI for ROS services interoperability
 - container:
 - name: “c2”
 - window:
 - name: auto-run
 - commands:
 - command: “echo ‘2013333333’ > /root/ur-serial && truncate -s -1 /root/ur-serial && cd /root/.urcontrol
&& ln -s urcontrol.conf.UR3 urcontrol.conf”
 - command: “/installer_ur_220.ris && source /root/run_gui.sh && $RUN_GUI”
 - split: “horizontal”
 - command: “/bin/sleep 1 && tail --pid=$(pidof installer_ur_220.ris) -f /dev/null && /bin/sleep 10 && cd /
root/.urcontrol/daemon/ && ./run”
 - split: “vertical”
 # signal 20 seconds after ris installer finishes S2 and indicate that that controller’s ready for the ROS
driver
 - command: “/bin/sleep 1 && tail --pid=$(pidof installer_ur_220.ris) -f /dev/null && /bin/sleep 20 && echo
-n ‘start’ | nc -q1 12.2.0.50 9999”
 - window:
 - name: ssh-service
 - commands:
 - command: “/etc/init.d/ssh start”
 - select: auto-run

 - container:
 - name: dmz-server
 - window:
 - name: routing-ros-dmz
 - commands:
 - command: “sudo route add -net 13.0.0.0/24 gw 14.0.0.253 eth0” # add route enable bidirectional comms
from DMZ 2, to process network (stations)

 # - container:
 # - name: kics4nodes
 # - window:
 # - name: kics4nodes
 # - commands:
 # - command: “ls -l /”

 - container:
 - name: kics4nets
 - window:
 - name: kics4nets
 - commands:
 - command: “ls -l /”

 - container:
 - name: sensor1
 - window:
 - name: sensor1
 - commands:

501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571

 - command: “ls -l /”

 - container:
 - name: attacker
 - window:
 - name: attacker
 - commands:
 - command: “ls -l /”

 - attach: “c2”

572
573
574
575
576
577
578
579
580
581

42 43

Securing robot endpoints in Operational Technology (OT) enviroments
Extending KICS with the Robot Immune System (RIS)

Securing robot endpoints in Operational Technology (OT) enviroments
Extending KICS with the Robot Immune System (RIS)

KASPERSKY lab applicationB

 For workstations

 Kaspersky Endpoint Security 10 for Windows
 Kaspersky Endpoint Security 11 for Windows
 Kaspersky Endpoint Security 10 for Linux
 Kaspersky Endpoint Security 10.1.2 for Linux Elbrus Edition
 Kaspersky Endpoint Security 10.1.4 for Linux ARM64 Edition
 Kaspersky Endpoint Security 11 for Linux
 Kaspersky Endpoint Security 10 for Mac
 Kaspersky Endpoint Security 11 for Mac
 Kaspersky Embedded Systems Security for Windows: 2.1 (2.1.0.441), 2.2
 (2.2.0.605), 2.3 (2.3.0.754)

 For file servers

 Kaspersky Endpoint Security 10 for Windows (file server mode)
 Kaspersky Endpoint Security 11 for Windows (file server mode)
 Kaspersky Security 10 for Windows Server
 Kaspersky Endpoint Security 10 for Linux (Server Protection)
 Kaspersky Endpoint Security 11 for Linux (Server Protection)
 Kaspersky Security for Virtualization 5.x Light Agent: 5.0
 Kaspersky Security for Virtualization 5.0 Agentless

 For mobile devices

 Kaspersky Security 10 for Mobile (Kaspersky Endpoint Security for Android)

 For detection of targeted attacks

 Kaspersky Anti Targeted Attack Platform 3.6
 Kaspersky Sandbox: 1.0, 1.1

 Kaspersky Industrial Cybersecurity

 Kaspersky Industrial Cybersecurity for Nodes: 2.5, 2.6
 Kaspersky Industrial Cybersecurity for Linux Nodes 1.0
 Kaspersky Industrial Cybersecurity for Networks: 2.7, 2.8, 2.9
 (centralized deployment is not supported)

 For mail systems and SharePoint/collaboration servers

 Kaspersky Security 8.0 for Linux Mail Server
 Kaspersky Secure Mail Gateway 1.0
 Kaspersky Security 9.0 for SharePoint Server
 Kaspersky Security 9.0 for Microsoft Exchange Servers

KASPERSKY Industrial Cybersecurity -
detailed capabilities

C

Create a hierarchy of Administration Servers to manage the organization’s network,
as well as networks at remote offices or client organizations. The client organization
is an organization whose anti-virus protection is ensured by the service provider.

Create a hierarchy of administration groups to manage a selection of client devices
as a whole.

Manage an anti-virus protection system built based on Kaspersky Lab applications.

Create images of operating systems and deploy them on client devices over the
network, as well as perform remote installation of applications by Kaspersky Lab
and other software vendors.

Remotely manage applications by Kaspersky Lab and other vendors installed on
client devices. Install updates, find and fix vulnerabilities.

Perform centralized deployment of keys for Kaspersky Lab applications to client
devices, monitor their use, and renew licenses.

Receive statistics and reports about the operation of applications and devices.

Receive notifications about critical events during the operation of Kaspersky Lab
applications.

Manage mobile devices.

Manage encryption of information stored on the hard drives of devices and removable
drives and users’ access to encrypted data.

Perform inventory of hardware connected to the organization’s network.

Centrally manage files moved to Quarantine or Backup by security applications,
as well as manage files for which processing by security applications has been
postponed.

KASPERSKY SECURITY CENTER (KSC)

44 45

Securing robot endpoints in Operational Technology (OT) enviroments
Extending KICS with the Robot Immune System (RIS)

Securing robot endpoints in Operational Technology (OT) enviroments
Extending KICS with the Robot Immune System (RIS)

Scans communications between industrial network devices to check their
compliance with defined Network Control rules.

Monitors industrial network devices and detects the activity of devices previously
unknown to the application, as well as the activity of devices that must not be
used in the industrial network or that have not shown any activity in a long time.
When monitoring devices, the application can automatically refresh information
about devices based on data received in network packets.

Displays the network interactions between industrial network devices depicted
as a network map. Problematic objects are visually distinguished from other
displayed objects.

Extracts the parameter values of the technological process controlled by the
Industrial Control System (hereinafter referred to as the “ICS”) from network
packets and checks the acceptability of those values based on the defined
Process Control rules.

Analyzes industrial network traffic to see if network packets contain system
commands transmitted or received by devices involved in automating an
enterprise’s processes (hereinafter referred to as “process control devices”).
Monitors traffic to detect system commands or situations that could be signs
of industrial network security violations.

Monitors project read and write operations for programmable logic controllers
(PLCs), saves the obtained information about projects, and compares this
information to previously obtained information.

Analyzes industrial network traffic for signs of attacks without affecting the
industrial network or drawing the attention of a potential attacker. Uses defined
Intrusion Detection rules and preset network packet scan algorithms to detect
signs of attacks.

Registers events and relays information about them to recipient systems and to
Kaspersky Security Center (KSC).

Analyzes registered events and, upon detecting certain sequences of events,
registers incidents based on embedded correlation rules. Incidents group events
that have certain common traits or that are associated with the same process.

Can be used to work with both the GUI and API.

KASPERSKY Industrial Cybersecurity For Networks (kics
for networks)

Scan file system objects located on the computer’s local drives, as well as mounted
and shared resources accessed via the SMB and NFS protocols.

Scan file system objects both in real time using File Threat Protection tasks and on
demand using virus scan tasks.

Scan boot sectors.

Scan process memory.

Detect infected objects. If an object is found to contain code from a known virus,
Kaspersky Industrial CyberSecurity for Linux Nodes considers the object as infected.

Neutralize threats detected in files automatically choosing what action to perform
to neutralize the threat.

Save backup copies of files before disinfection or deletion and restore files from
backup copies.

Manage tasks and configure their settings.

Add keys and activate the application by using activation codes.

Notify the administrator about events occurring during the operation of Kaspersky
Industrial CyberSecurity for Linux Nodes.

Update Kaspersky Industrial CyberSecurity for Linux Nodes databases from
Kaspersky update servers, via the Administration Server, or from a user-specified
source by schedule or on demand.

Use anti-virus databases to detect and disinfect infected files. Kaspersky Industrial
CyberSecurity for Linux Nodes analyzes each file for threats during the scan process:
file code is matched against code that resembles a particular threat.

Monitor the integrity of the system or specified files, and report changes. System
Integrity Monitoring can be performed in a constant monitoring mode, and in on-
demand scan mode.

Manage an operating system firewall and, if necessary, restore a set of the firewall
rules that was changed.

Protect your files in the local directories with network access by SMB/NFS protocols
from remote malicious encrypting.

Scan traffic that arrives to the user computer via the HTTP/HTTPS and FTP protocols,
and check whether web addresses are malicious or phishing.

KASPERSKY Industrial Cybersecurity For
Nodes (kics for nodes)

46 47

Securing robot endpoints in Operational Technology (OT) enviroments
Extending KICS with the Robot Immune System (RIS)

Securing robot endpoints in Operational Technology (OT) enviroments
Extending KICS with the Robot Immune System (RIS)

Configure flexible access restrictions to mass storage devices (such as hard
drives, removable drives, CD, DVD), data transmission equipment (such as
modems), equipment that converts information (such as printers), or interfaces
for connecting devices to computers (such as USB, FireWire).

Scan removable drives when they are connected to a computer.

Inspect inbound network traffic for activity that is typical of network attacks.

Scan Docker containers and images, name spaces.

Receive information about the actions of applications on a computer.

Specify encrypted connections scan settings.

Participate in Kaspersky Security Network.

Allow non-root users manage basic application functions using the graphical
user interface.

Update the application by using update packages.

Check the integrity of application components by using the integrity check tool.

